• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Métodos de Investigación y Diagnóstico en Educación
  • DMIDE - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Métodos de Investigación y Diagnóstico en Educación
  • DMIDE - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cybervictim vs. cyberaggressor. profile determination and comparison through artificial neural networks

[PDF] Artículo principal (617.9Kb)
Identificadores
URI: https://hdl.handle.net/10481/103459
DOI: https://doi.org/10.1080/17450128.2024.2319055
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Ortiz Marcos, José Manuel; Solano Sánchez, Miguel Ángel; Lendinez Turón, Ana; Tomé Fernández, María
Editorial
Taylos & Francis
Fecha
2024-02-25
Referencia bibliográfica
Ortiz-Marcos, J. M., Solano-Sánchez, M. Á., Lendinez-Turón, A., & Tomé-Fernández, M. (2024). Cybervictim vs. cyberaggressor. profile determination and comparison through artificial neural networks. Vulnerable Children and Youth Studies, 19(2), 288–308. https://doi.org/10.1080/17450128.2024.2319055
Resumen
This research aims to determine the magnitude to which aspects of the sociodemographic profile of students (gender, age, religion, ethnicity and race) influence both the acts of harassment received as a cybervictim and those carried out as a cyberaggressor. Additionally, aiming to discover which of these acts suffered as cybervictim or carried out as cyberaggressor increase or decrease to a greater extent, comparing a profile of potential cyberaggressor with another of potential cybervictim. For this purpose, an artificial neural network of the multilayer perceptron type is employed, generating an estimation model of these cybervictim and cyberaggressor facts based on the students’ profile using data obtained through a five-points’ Likert questionnaire. That is especially useful for detecting specific behaviours based on a certain profile, being able to determine which of these attitudes are most at risk of occurring to put the relevant measures in place to prevent them.
Colecciones
  • DMIDE - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias