Universidad de Granada Digibug
 

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Física Aplicada >
DFA - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/48369

Title: The boundary condition for vertical velocity and its interdependence with surface gas exchange
Authors: Kowalski, Andrew S.
Issue Date: 5-Jul-2017
Abstract: The law of conservation of linear momentum is applied to surface gas exchanges, employing scale analysis to diagnose the vertical velocity (w) in the boundary layer. Net upward momentum in the surface layer is forced by evaporation (E) and defines non-zero vertical motion, with a magnitude defined by the ratio of E to the air density, as w = E/ρ. This is true even right down at the surface where the boundary condition is w|0 = E/ρ|0 (where w|0 and ρ|0 represent the vertical velocity and density of air at the surface). This Stefan flow velocity implies upward transport of a non-diffusive nature that is a general feature of the troposphere but is of particular importance at the surface, where it assists molecular diffusion with upward gas migration (of H2O, for example) but opposes that of downward-diffusing species like CO2 during daytime. The definition of flux–gradient relationships (eddy diffusivities) requires rectification to exclude non-diffusive transport, which does not depend on scalar gradients. At the microscopic scale, the role of non-diffusive transport in the process of evaporation from inside a narrow tube – with vapour transport into an overlying, horizontal airstream – was described long ago in classical mechanics and is routinely accounted for by chemical engineers, but has been neglected by scientists studying stomatal conductance. Correctly accounting for non-diffusive transport through stomata, which can appreciably reduce net CO2 transport and marginally boost that of water vapour, should improve characterisations of ecosystem and plant functioning.
Sponsorship: Investigation into this matter was funded by Spanish national project GEISpain (CGL2014-52838-C2-1-R).
Publisher: European Geosciences Union
Keywords: Transport
Stomata
Surface gas exchanges
Vertical velocity
Ecosystems
URI: http://hdl.handle.net/10481/48369
ISSN: 1680-7316
1680-7324
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Kowalski, A.S. The boundary condition for vertical velocity and its interdependence with surface gas exchange. Atmospheric Chemistry and Physics, 17: 8177-8187 (2017). [http://hdl.handle.net/10481/48369]
Appears in Collections:DFA - Artículos

Files in This Item:

File Description SizeFormat
Kowalski_VerticalVelocity.pdf305.66 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada