Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Tesis >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/47257

Title: Operadores extremos en espacios de Banach
Authors: Cabrera Serrano, Ana María
Direction: Mena Jurado, Juan Francisco
Collaborator: Universidad de Granada. Departamento de Análisis Matemático
Issue Date: 2017
Submitted Date: 30-Jun-2017
Abstract: This dissertation is devoted to study a class of Banach spaces in which the class of extreme operators agree with the more restricted class called nice operators. This agreement has been previously considered in different types of Banach spaces. We fix some notation in order to give the accurate notions we are going to deal with. Only real Banach spaces will be considered in this dissertation. If X is a Banach space, then BX, SX, and EX will stand for the closed unit ball of X, the sphere of X, and the set of extreme points of BX, respectively. Given another normed space Y , we denote by L(X; Y ) the space of all continuous linear operators from X into Y endowed with its canonical norm. When Y = R, we will write X*, the dual space of X, instead of L(X;R). For T in L(X; Y ) we define T* L(Y*;X*), the adjoint operator of T, by T*(y*) = y* T for all y* in Y*. Once we have introduced the basic notation we can explain the main results of each chapter.
Sponsorship: Tesis Univ. Granada. Programa Oficial de Doctorado en: Matemáticas
Publisher: Universidad de Granada
Keywords: Espacios de Banach
Algebras de funciones
Algebras de operadores
Análisis funcional
Algebras de Hilbert
Espacios Lp
Espacios funcionales
UDC: 517
URI: http://hdl.handle.net/10481/47257
ISBN: 9788491632870
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Cabrera Serrano, A.M. Operadores extremos en espacios de Banach. Granada: Universidad de Granada, 2017. [http://hdl.handle.net/10481/47257]
Appears in Collections:Tesis

Files in This Item:

File Description SizeFormat
2656225x.pdf774.91 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada