Operadores extremos en espacios de Banach
Cabrera Serrano, Ana María
Mena Jurado, Juan Francisco
Universidad de Granada. Departamento de Análisis Matemático
Espacios de Banach
Matemáticas
Algebras de funciones
Algebras de operadores
Análisis funcional
Algebras de Hilbert
Espacios Lp
Espacios funcionales
This dissertation is devoted to study a class of Banach spaces in which the class of extreme operators agree with the more restricted class called nice operators. This agreement has been previously considered in different types
of Banach spaces. We fix some notation in order to give the accurate notions we are going to deal with.
Only real Banach spaces will be considered in this dissertation. If X is a Banach space, then BX, SX, and EX will stand for the closed unit ball of X, the sphere of X, and the set of extreme points of BX, respectively. Given
another normed space Y , we denote by L(X; Y ) the space of all continuous linear operators from X into Y endowed with its canonical norm. When Y = R, we will write X*, the dual space of X, instead of L(X;R). For T in L(X; Y ) we define T* L(Y*;X*), the adjoint operator of T, by T*(y*) = y* T for all y* in Y*. Once we have introduced the basic notation
we can explain the main results of each chapter.
2017-07-24T12:19:03Z
2017-07-24T12:19:03Z
2017
2017-06-30
info:eu-repo/semantics/doctoralThesis
Cabrera Serrano, A.M. Operadores extremos en espacios de Banach. Granada: Universidad de Granada, 2017. [http://hdl.handle.net/10481/47257]
9788491632870
http://hdl.handle.net/10481/47257
spa
http://creativecommons.org/licenses/by-nc-nd/3.0/
info:eu-repo/semantics/openAccess
Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Universidad de Granada