Show simple item record

dc.contributor.authorMartínez-López, Antonio
dc.contributor.authorMilán López, Francisco
dc.identifier.citationMartínez-López, A.; Milán López, F. The geometric Cauchy problem for the hyperbolic Hessian one equation. Nonlinear Analysis: Theory, Methods and Applications, 125: 323–333 (2015). []es_ES
dc.description.abstractWe solve the problem of finding all indefinite improper affine spheres passing through a given regular curve of R3R3 with a prescribed affine co-normal vector field along this curve. We prove the problem is well-posed when the initial data are non-characteristic and show that uniqueness of the solution can fail at characteristic directions. As application we classify the indefinite improper affine spheres admitting a geodesic planar curve.es_ES
dc.description.sponsorshipMinisterio de Educación y Ciencia Grant No. MTM2013-43970-P and Junta de Andalucía Grant No. FQM-325.es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 Licensees_ES
dc.subjectCauchy problemes_ES
dc.subjectHyperbolic Hessian one equationes_ES
dc.subjectImproper affine sphereses_ES
dc.titleThe geometric Cauchy problem for the hyperbolic Hessian one equationes_ES

Files in this item


This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Except where otherwise noted, this item's license is described as Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License