Universidad de Granada Digibug

Repositorio Institucional de la Universidad de Granada >
1.-Investigación >
Departamentos, Grupos de Investigación e Institutos >
Departamento de Geometría y Topología >
DGT - Artículos >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10481/37917

Title: [EMBARGADO hasta octubre 2016] The geometric Cauchy problem for the hyperbolic Hessian one equation
Authors: Martínez-López, Antonio
Milán López, Francisco
Issue Date: 2015
Abstract: We solve the problem of finding all indefinite improper affine spheres passing through a given regular curve of R3R3 with a prescribed affine co-normal vector field along this curve. We prove the problem is well-posed when the initial data are non-characteristic and show that uniqueness of the solution can fail at characteristic directions. As application we classify the indefinite improper affine spheres admitting a geodesic planar curve.
Sponsorship: Ministerio de Educación y Ciencia Grant No. MTM2013-43970-P and Junta de Andalucía Grant No. FQM-325.
Keywords: Cauchy problem
Hyperbolic Hessian one equation
Improper affine spheres
URI: http://hdl.handle.net/10481/37917
ISSN: 0362-546X
Rights : Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Citation: Martínez-López, A.; Milán López, F. The geometric Cauchy problem for the hyperbolic Hessian one equation. Nonlinear Analysis: Theory, Methods and Applications, 125: 323–333 (2015). [http://hdl.handle.net/10481/37917]
Appears in Collections:DGT - Artículos

Files in This Item:

File Description SizeFormat
NLA16.pdf447.9 kBAdobe PDFView/Open
Recommend this item

This item is licensed under a Creative Commons License
Creative Commons

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! OpenAire compliant DSpace Software Copyright © 2002-2007 MIT and Hewlett-Packard - Feedback

© Universidad de Granada