Plant catalases as NO and H2S targets Palma, José Manuel López Jaramillo, Francisco Javier González Gordo, Salvador Corpas, Francisco J. Docking Nitration S-nitrosation Persulfidation Post-translational modification Signaling SGG acknowledges a ‘Formación de Personal Investigador’ contract from the Ministry of Economy and Competitiveness, Spain. Catalase is a powerful antioxidant metalloenzyme located in peroxisomes which also plays a central role in signaling processes under physiological and adverse situations. Whereas animals contain a single catalase gene, in plants this enzyme is encoded by a multigene family providing multiple isoenzymes whose number varies depending on the species, and their expression is regulated according to their tissue/organ distribution and the environmental conditions. This enzyme can be modulated by reactive oxygen and nitrogen species (ROS/RNS) as well as by hydrogen sulfide (H2S). Catalase is the major protein undergoing Tyr-nitration [post-translational modification (PTM) promoted by RNS] during fruit ripening, but the enzyme from diverse sources is also susceptible to undergo other activity-modifying PTMs. Data on S-nitrosation and persulfidation of catalase from different plant origins are given and compared here with results from obese children where S-nitrosation of catalase occurs. The cysteine residues prone to be S-nitrosated in catalase from plants and from bovine liver have been identified. These evidences assign to peroxisomes a crucial statement in the signaling crossroads among relevant molecules (NO and H2S), since catalase is allocated in these organelles. This review depicts a scenario where the regulation of catalase through PTMs, especially S-nitrosation and persulfidation, is highlighted. 2020-09-04T08:24:34Z 2020-09-04T08:24:34Z 2020-05-25 info:eu-repo/semantics/article Palma, J. M., Mateos, R. M., López-Jaramillo, J., Rodríguez-Ruiz, M., González-Gordo, S., Lechuga-Sancho, A. M., & Corpas, F. J. (2020). Plant catalases as NO and H2S targets. Redox biology, 101525. [https://doi.org/10.1016/j.redox.2020.101525] http://hdl.handle.net/10481/63287 10.1016/j.redox.2020.101525 eng http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España Elsevier