In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications. Running Title: Fibrin–Agarose Functionalized Scaffolds Blanco Elices, Cristina España-Guerrero, Enrique Mateu Sanz, Miguel Sánchez Porras, David García-García, Óscar Darío Sánchez Quevedo, María Del Carmen Fernández Valadés, Ricardo Alaminos Mingorance, Miguel Martín Piedra, Miguel Ángel Garzón Bello, Ingrid Johanna functionalization Oral and dental tissues Biomaterials Extracellular-matrix Tissue engineering Supplementary Materials The following are available online at https://www.mdpi.com/1996-1944/13/7/1692/s1, Table S1: Statistical comparison of staining intensity for histochemical and immunohistochemical analyses in the specific samples considered in the present study. Recent advances in tissue engineering offer innovative clinical alternatives in dentistry and regenerative medicine. Tissue engineering combines human cells with compatible biomaterials to induce tissue regeneration. Shortening the fabrication time of biomaterials used in tissue engineering will contribute to treatment improvement, and biomaterial functionalization can be exploited to enhance scaffold properties. In this work, we have tested an alternative biofabrication method by directly including human oral mucosa tissue explants within the biomaterial for the generation of human bioengineered mouth and dental tissues for use in tissue engineering. To achieve this, acellular fibrin–agarose scaffolds (AFAS), non-functionalized fibrin-agarose oral mucosa stroma substitutes (n-FAOM), and novel functionalized fibrin-agarose oral mucosa stroma substitutes (F-FAOM) were developed and analyzed after 1, 2, and 3 weeks of in vitro development to determine extracellular matrix components as compared to native oral mucosa controls by using histochemistry and immunohistochemistry. Results demonstrate that functionalization speeds up the biofabrication method and contributes to improve the biomimetic characteristics of the scaffold in terms of extracellular matrix components and reduce the time required for in vitro tissue development. 2020-06-02T11:41:35Z 2020-06-02T11:41:35Z 2020-04-04 info:eu-repo/semantics/article Blanco-Elices, C.; España-Guerrero, E.; Mateu-Sanz, M.; Sánchez-Porras, D.; García-García, Ó.D.; Sánchez-Quevedo, M.C.; Fernández-Valadés, R.; Alaminos, M.; Martín-Piedra, M.Á.; Garzón, I. In Vitro Generation of Novel Functionalized Biomaterials for Use in Oral and Dental Regenerative Medicine Applications. Running Title: Fibrin–Agarose Functionalized Scaffolds. Materials 2020, 13, 1692. [doi:10.3390/ma13071692] http://hdl.handle.net/10481/62333 10.3390/ma13071692 eng http://creativecommons.org/licenses/by/3.0/es/ info:eu-repo/semantics/openAccess Atribución 3.0 España MDPI