• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Educación Física y Deportiva
  • DEFD - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Educación Física y Deportiva
  • DEFD - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerometer data collection and processing criteria to assess physical activity and other outcomes: a systematic review and practical considerations

[PDF] Artículo científico (2.822Mb)
Identificadores
URI: https://hdl.handle.net/10481/99733
DOI: 10.1007/s40279-017-0716-0
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Hidalgo Migueles, Jairo; Cadenas Sánchez, Cristina; Ekelund, Ulf; Delisle Nyström, Christine; Mora González, José Rafael; Löf, Marie; Labayen, Idoia; Ruiz Ruiz, Jonatan; Ortega Porcel, Francisco Bartolomé
Editorial
Springer Nature
Materia
Indirect Calorimetry
 
Multivariate Adaptive Regression Spline
 
Physical Activity Intensity
 
Sedentary Time
 
Vigorous Physical Activity
 
Fecha
2017-03-16
Referencia bibliográfica
Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, Labayen I, Ruiz JR, Ortega FB. Accelerometer Data Collection and Processing Criteria to Assess Physical Activity and Other Outcomes: A Systematic Review and Practical Considerations. Sports Med. 2017 Sep;47(9):1821-1845. doi: 10.1007/s40279-017-0716-0. PMID: 28303543; PMCID: PMC6231536.
Patrocinador
This study was supported by the Spanish Ministry of Economy and Competitiveness (DEP2013-47540, DEP2016-79512-R & PSI2012- 3929), the Alicia Kolplowitz Foundation and for the Spanish Ministry of Science and Innovation (RYC-2011-09011 & FJCI-2014-19563). IE-C received a scholarship from the Alicia Koplowitz Foundation and a Jose Castillejo scholarship (CAS17/00320) for a brief stay in the Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Australia. CC-S is supported by a grant from the Spanish Ministry of Economy and Competitiveness (BES-2014-068829). JM-G and JHM are supported by the Spanish Ministry of Education, Culture and Sport (FPU14/06837 and FPU15/02645, respectively). PH is supported by a grant from the Strategic Research Area Health Care Science, Karolinska Institutet/Umeå University. OC-R is supported by a Postdoctoral “PERIS” Contract (SLT006/17/00236) from the Catalan Government, 2017, Spain. JVR is supported by a postdoctoral fellowship from the Junta de Andalucía (P10-HUM-6635). This study takes place thanks to the additional funding from the University of Granada, Plan Propio de Investigación 2016, Excellence actions: Units of Excellence; Unit of Excellence on Exercise and Health (UCEES). Additional funding from the EXERNET Research Network on Exercise and Health in Special Populations (DEP2005-00046/ACTI, the SAMID III network, RETICS, funded by the PN IþDþI 2017–2021 (Spain), ISCIII- Sub-Directorate General for Research Assessment and Promotion and the European Regional Development Fund (ERDF) (Ref. RD16/0022).
Resumen
Background: Accelerometers are widely used to measure sedentary time, physical activity, physical activity energy expenditure (PAEE), and sleep-related behaviors, with the ActiGraph being the most frequently used brand by researchers. However, data collection and processing criteria have evolved in a myriad of ways out of the need to answer unique research questions; as a result there is no consensus. Objectives: The purpose of this review was to: (1) compile and classify existing studies assessing sedentary time, physical activity, energy expenditure, or sleep using the ActiGraph GT3X/+ through data collection and processing criteria to improve data comparability and (2) review data collection and processing criteria when using GT3X/+ and provide age-specific practical considerations based on the validation/calibration studies identified. Methods: Two independent researchers conducted the search in PubMed and Web of Science. We included all original studies in which the GT3X/+ was used in laboratory, controlled, or free-living conditions published from 1 January 2010 to the 31 December 2015. Results: The present systematic review provides key information about the following data collection and processing criteria: placement, sampling frequency, filter, epoch length, non-wear-time, what constitutes a valid day and a valid week, cut-points for sedentary time and physical activity intensity classification, and algorithms to estimate PAEE and sleep-related behaviors. The information is organized by age group, since criteria are usually age-specific. Conclusion: This review will help researchers and practitioners to make better decisions before (i.e., device placement and sampling frequency) and after (i.e., data processing criteria) data collection using the GT3X/+ accelerometer, in order to obtain more valid and comparable data.
Colecciones
  • DEFD - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias