• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Building agent-based decision support systems for managing word-of-mouth programs: a freemium application

[PDF] chica_rand_final_manuscript.pdf (2.585Mo)
[PDF] Web appendix (1.229Mo)
Identificadores
URI: https://hdl.handle.net/10481/97247
DOI: https://doi.org/10.1509/jmr.15.0443
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Chica Serrano, Manuel; Rand, William
Date
2017
Referencia bibliográfica
Journal of Marketing Research, 54:5 752-767, 2017
Résumé
Marketers have to constantly make decisions on how to implement word-of-mouth (WOM) programs and a well-developed decision support system (DSS) can provide them with valuable assistance. The authors propose an agent-based framework that aggregates social network-level individual interactions to guide the construction of a successful DSS for WOM. The framework presents a set of guidelines and recommendations to: (1) involve stakeholders, (2) follow a data-driven iterative modeling approach, (3) increase validity through automated calibration, and (4) understand the DSS behavior. This framework is applied to build a DSS for a freemium app, where premium users discuss the product with their social network and promote the viral adoption. After its validation, the agent-based DSS forecasts the aggregate number of premium sales over time and the most likely users to become premium in a near future. The experiments show how the DSS can help managers by forecasting premium conversions and increasing the number of premiums via targeting and reward policies.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire