• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ingeniería Civil
  • DIC - Comunicaciones Congresos, Conferencias, ...
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ingeniería Civil
  • DIC - Comunicaciones Congresos, Conferencias, ...
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimating traffic conflict severity for Connected and Automated vehicles using simulation-based surrogate safety indicators

[PDF] 2021-93b-Estimating-traffic-conflict-severity-for-Connected-and-Automated-vehicles-usinh-simulation-based-surrogate-safety-indicators-Migdady-de-Ona-de-Ona.pdf (1.902Mb)
Identificadores
URI: https://hdl.handle.net/10481/93255
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Miqdady, Tasneem; Oña López, Rocío de; Oña López, Juan José De
Date
2021
Referencia bibliográfica
T. Miqdady, R.de Oña and J. de Oña (2021). Estimating traffic conflict severity for Connected and Automated vehicles using simulation-based surrogate safety indicators. 20º Congreso Chileno de Ingeniería de Transporte (CCHIT 20), 2021
Sponsorship
This work is part of the Research Project PID2019-110741RA-I00, funded by the Spanish State Research Agency (MCIN/AEI/10.13039/501100011033)
Abstract
Connected and Autonomous Vehicles (CAV) is the developing summit of the integration between artificial intelligence (AI), robotics, automotive design and information technologies. Many researchers are investigating their effects on traffic safety. This study tries to quantify the volume of incidents when sharing the road human-driven vehicles and fully CAV. After modeling the geometry of 4.5 km of motorway and the parameters of connectivity and automation using Aimsun Next platform, several scenarios of the percentages of CAV (0%, 25%, 50%, 75%, and 100%) were driven in microsimulation runs. Then the microsimulation generated vehicles trajectories that are used to identify conflicts using the Surrogate Safety Assessment Model (SSAM). The results of this analysis confirm previous research in that the reduction of number of conflicts will be up to 35% with low and moderate penetration rates of CAV and more than 80% if the road is operated only with CAV.
Collections
  • DIC - Comunicaciones Congresos, Conferencias, ...

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback