Faraday rotation and transmittance as markers of topological phase transitions in 2D materials
Metadatos
Afficher la notice complèteAuteur
Calixto Molina, Manuel; Mayorgas, Alberto; Cordero, Nicolás A.; Romera Gutiérrez, Elvira; Castaños, OctavioEditorial
SciPost Foundation
Date
2024-03-18Referencia bibliográfica
Calixto, M., Mayorgas, A., Cordero, N. A., Romera, E., & Castaños Garza, O. H. Faraday rotation and transmittance as markers of topological phase transitions in 2D materials. SciPost Phys. 16, 077 (2024) [10.21468/SciPostPhys.16.3.077]
Patrocinador
Consejería de Economía, Innovación, Ciencia y Empleo, Junta de Andalucía (through Organization: Consejería de Economía Innovación Ciencia y Empleo); Ministerio de Ciencia e Innovación; Universidad Nacional Autónoma de México / National Autonomous University of Mexico [UNAM]Résumé
We analyze the magneto-optical conductivity (and related magnitudes like transmittance
and Faraday rotation of the irradiated polarized light) of some elemental twodimensional
Dirac materials of group IV (graphene analogues, buckled honeycomb lattices,
like silicene, germanene, stannane, etc.), group V (phosphorene), and zincblende
heterostructures (like HgTe/CdTe quantum wells) near the Dirac and gamma points, under
out-of-plane magnetic and electric fields, to characterize topological-band insulator
phase transitions and their critical points. We provide plots of the Faraday angle and
transmittance as a function of the polarized light frequency, for different external electric
and magnetic fields, chemical potential, HgTe layer thickness and temperature, to tune
the material magneto-optical properties. We have shown that absortance/transmittance
acquires extremal values at the critical point, where the Faraday angle changes sign, thus
providing fine markers of the topological phase transition. In the case of non-topological
materials as phosphorene, a minimum of the transmittance is also observed due to the
energy gap closing by an external electric field.