• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A decision support tool for credit domains: Bayesian network with a variable selector based on imprecise probabilities

[PDF] Borrador (1.033Mo)
Identificadores
URI: https://hdl.handle.net/10481/88531
DOI: 10.1007/s40815-021-01079-w
ISSN: 1562-2479
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
García Castellano, Francisco Javier; Moral García, Serafín; Mantas Ruiz, Carlos Javier; Benítez Estévez, María Dolores; Abellán Mulero, Joaquín
Editorial
Springer
Materia
Credit domains
 
Bayesian networks
 
Inference
 
Feature selection
 
Imprecise probabilities
 
Date
2021-06-20
Referencia bibliográfica
Castellano, J. G., Moral-García, S., Mantas, C. J., Benítez, M. D., & Abellán, J. (2021). A decision support tool for credit domains: Bayesian network with a variable selector based on imprecise probabilities. International Journal of Fuzzy Systems, 1-17. Doi: 10.1007/s40815-021-01079-w
Patrocinador
This work has been supported by the Spanish ‘‘Ministerio de Economía y Competitividad’’ and by ‘‘Fondo Europeo de Desarrollo Regional’’ (FEDER) under Project TEC2015-69496-R.
Résumé
A Bayesian Network (BN) is a graphical structure, with associated conditional probability tables. This structure allows us to obtain different knowledge than the one obtained from standard classifiers. With a BN, representing a dataset, we can calculate different probabilities about a set of features with respect to other ones. This inference can be more powerful than the one obtained from classifiers. A BN can be built from data and have analytical and diagnostic capabilities that make it very suitable for credit domains. Credit scoring and risk analysis are fundamental tasks for financial institutions with the aim to avoid important losses. In these tasks and other domains, an excessive number of features can convert a BN into a complex and difficult to interpret model, but a few number of features can represent a loss of information obtained from data. A new method based on imprecise probabilities is presented to select an informative subset of features. Using this new feature selection method, we can build a BN that has an excellent adjustment to the data, considering a reduced number of features. Via a set of experiments, it is shown that the adjustment is better than the ones obtained with no previous variable selection method and with a similar and successful variable subset selection method based on precise probabilities. Finally, a BN is built with two important characteristics: (i) it represents a better adjustment to the data; and (ii) it has a low complexity (better interpretability) due to the small number of important selected features. A practical example about inference on a BN to help on credit risk analysis is also presented.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire