• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Increasing diversity in Random Forest learning algorithm via imprecise probabilities

[PDF] Artículo versión aceptada. (251.8Ko)
Identificadores
URI: https://hdl.handle.net/10481/88516
DOI: 10.1016/j.eswa.2017.12.029
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Abellán Mulero, Joaquín; Mantas Ruiz, Carlos Javier; García Castellano, Francisco Javier; Moral García, Serafín
Editorial
Elsevier
Materia
Classification
 
Ensemble schemes
 
Random forest
 
Imprecise probabilities
 
Uncertainty measures
 
Date
2018-05-01
Referencia bibliográfica
Published version: Abellán, J., Mantas, C. & Castellano, J. G. & Moral-García, S. (2018). Increasing diversity in Random Forest learning algorithm via imprecise probabilities. Expert Systems with Applications 97: 228–243. Doi: 10.1016/j.eswa.2017.12.029
Patrocinador
This work has been supported by the Spanish “Ministerio de Economía y Competitividad” and by “Fondo Europeo de Desarrollo Regional” (FEDER) under Project TEC2015-69496-R.
Résumé
Random Forest (RF) learning algorithm is considered a classifier of reference due its excellent performance. Its success is based on the diversity of rules generated from decision trees that are built via a procedure that randomizes instances and features. To find additional procedures for increasing the diversity of the trees is an interesting task. It has been considered a new split criterion, based on imprecise probabilities and general uncertainty measures, that has a clear dependence of a parameter and has shown to be more successful than the classic ones. Using that criterion in RF scheme, join with a random procedure to select the value of that parameter, the diversity of the trees in the forest and the performance are increased. This fact gives rise to a new classification algorithm, called Random Credal Random Forest (RCRF). The new method represents several improvements with respect to the classic RF: the use of a more successful split criterion which is more robust to noise than the classic ones; and an increasing of the randomness which facilitates the diversity of the rules obtained. In an experimental study, it is shown that this new algorithm is a clear enhancement of RF, especially when it applied on data sets with class noise, where the standard RF has a notable deterioration. The problem of overfitting that appears when RF classifies data sets with class noise is solved with RCRF. This new algorithm can be considered as a powerful alternative to be used on data with or without class noise.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire