• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-parametric predictive inference for solving multi-label classification

[PDF] Artículo versión aceptada. (496.9Ko)
Identificadores
URI: https://hdl.handle.net/10481/88514
DOI: 10.1016/j.asoc.2019.106011
ISSN: 1568-4946
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Moral García, Serafín; Mantas Ruiz, Carlos Javier; García Castellano, Francisco Javier; Abellán Mulero, Joaquín
Editorial
Elsevier
Materia
Multi-Label Classification
 
Multi-Label Decision Tree
 
NPI-M
 
Multi-Label Credal Decision Tree
 
Noise
 
Date
2020-03
Referencia bibliográfica
Moral-García, S., Mantas, C. J., Castellano, J. G., & Abellán, J. (2020). Non-parametric predictive inference for solving multi-label classification. Applied Soft Computing, Volume 38, 106011. Doi: 10.1016/j.asoc.2019.106011
Patrocinador
This work has been supported by the Spanish “Ministerio de Economía y Competitividad” and by “Fondo Europeo de Desarrollo Regional” (FEDER), Spain under Project TEC2015-69496-R.
Résumé
Decision Trees (DTs) have been adapted to Multi-Label Classification (MLC). These adaptations are known as Multi-Label Decision Trees (ML-DT). In this research, a new ML-DT based on the Nonparametric Predictive Inference Model on Multinomial data (NPI-M) is proposed. The NPI-M is an imprecise probabilities model that provides good results when it is applied to DTs in standard classification. Unlike other models based on imprecise probabilities, the NPI-M is a nonparametric approach and it does not make unjustified assumptions before observing data. It is shown that the new ML-DT based on the NPI-M is more robust to noise than the ML-DT based on precise probabilities. As the intrinsic noise in MLC might be higher than in traditional classification, it is expected that the new ML-DT based on the NPI-M outperforms the already existing ML-DT. This fact is validated with an exhaustive experimentation carried out in this work on different MLC datasets with several levels of added noise. In it, many MLC evaluation metrics are employed in order to measure the performance of the algorithms. The experimental analysis shows that the proposed ML-DT based on NPI-M obtains better results than the ML-DT that uses precise probabilities, especially when we work on data with noise.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire