• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bagging of Credal Decision Trees for Imprecise Classification

[PDF] Artículo versión enviada (189.2Kb)
Identificadores
URI: https://hdl.handle.net/10481/88513
DOI: 10.1016/j.eswa.2019.112944
ISSN: 0957-4174
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Moral García, Serafín; Mantas Ruiz, Carlos Javier; García Castellano, Francisco Javier; Benítez Estévez, María Dolores; Abellán Mulero, Joaquín
Editorial
Elsevier
Materia
Imprecise classification
 
Credal decision trees
 
Ensembles
 
Bagging
 
Combination technique
 
Date
2020-03-01
Referencia bibliográfica
Moral-García, S., Mantas, C. J., Castellano, J. G., Benítez, M. D., & Abellán, J. (2020). Bagging of Credal Decision Trees for Imprecise Classification. Expert Systems with Applications, 141(1). Doi: 10.1016/j.eswa.2020.112944
Sponsorship
This work has been supported by the Spanish “Ministerio de Economía y Competitividad” and by “Fondo Europeo de Desarrollo Regional” (FEDER) under Project TEC2015-69496-R.
Abstract
The Credal Decision Trees (CDT) have been adapted for Imprecise Classification (ICDT). However, no ensembles of imprecise classifiers have been proposed so far. The reason might be that it is not a trivial question to combine the predictions made by multiple imprecise classifier. In fact, if the combination method used is not appropriate, the ensemble method could even worse the performance of one single classifier. On the other hand, the Bagging scheme has shown to provide satisfactory results in precise classification, specially when it is used with CDTs, which are known to be very weak and unstable classifiers. For these reasons, in this research, it is proposed a new Bagging scheme with ICDTs. It is presented a new technique for combining predictions made by imprecise classifiers that tries to maximize the precision of the bagging classifier. If the procedure for such a combination is too conservative it is easy to obtain few information and worse the results of a single classifier. Our proposal considers only the states with the minimum level of non-dominance. An exhaustive experimentation carried out in this work has shown that the Bagging of ICDTs, with our proposed combination technique, performs clearly better than a single ICDT.
Collections
  • DCCIA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback