• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

IFC-BD: An Interpretable Fuzzy Classifier for Boosting Explainable Artificial Intelligence in Big Data

[PDF] IFC_BD_Manuscript__March_2020_.pdf (522.4Ko)
Identificadores
URI: https://hdl.handle.net/10481/87860
DOI: 10.1109/tfuzz.2021.3049911
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Fernández Hilario, Alberto Luis; Javidi, Mohammad Masoud; Aghaeipoor, Fatemeh
Editorial
IEEE Transactions on Fuzzy Systems
Materia
Big Data
 
Linguistics
 
Semantics
 
Cognition
 
Scalability
 
Reliability
 
Fuzzy sets
 
Date
2021-01
Referencia bibliográfica
F. Aghaeipoor, M. M. Javidi and A. Fernández, "IFC-BD: An Interpretable Fuzzy Classifier for Boosting Explainable Artificial Intelligence in Big Data," in IEEE Transactions on Fuzzy Systems, vol. 30, no. 3, pp. 830-840, March 2022, doi: 10.1109/TFUZZ.2021.3049911. keywords: {Big Data;Linguistics;Semantics;Cognition;Scalability;Reliability;Fuzzy sets;Apache spark framework;Big Data;explainable artificial intelligence (XAI);fuzzy rule-based classification systems (FRBCSs);interpretability;scalability},
Résumé
In current Data Science applications, the course of action has derived to adapt the system behavior for the human cognition, resulting in the emerging area of explainable artificial intelligence. Among different classification paradigms, those based on fuzzy rules are suitable solutions to stress the interpretability of the global systems. However, in case of addressing Big Data analytics, they may comprise an excessive number of rules and/or linguistic labels that not only may cause losing the system performance but also may affect the system semantic as well as the system interpretability. In this article, we propose IFC-BD, an interpretable fuzzy classifier for Big Data, aiming at boosting the horizons of explainability by learning a compact yet accurate fuzzy model. IFC-BD is developed in a cell-based distributed framework through the three working stages of initial rule learning, rule generalization, and heuristic rule selection. This whole procedure allows reaching from a high number of specific rules to less number of more general and confident rules. Additionally, in order to resolve possible rules conflict, a new estimated rule weight is proposed specifically for big data problems. IFC-BD was evaluated in comparison to the state-of-the-art approaches of the fuzzy classification paradigm, considering interpretability, accuracy, and running time. The findings of the experiments revealed that the proposed algorithm was able to improve the explainability of fuzzy rule-based classifiers as well as their predictive performance.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire