• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evolutionary Fuzzy Systems for Explainable Artificial Intelligence: Why, When, What for, and Where to?

[PDF] Artículo principal (258.0Ko)
Identificadores
URI: https://hdl.handle.net/10481/87803
DOI: 10.1109/mci.2018.2881645
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Herrera Triguero, Francisco; Fernández Hilario, Alberto Luis; Cordón García, Óscar; del Jesus Díaz, María Jose; Marcelloni, Francesco
Editorial
IEEE Computational Intelligence Magazine
Date
2019-01
Referencia bibliográfica
A. Fernandez, F. Herrera, O. Cordon, M. Jose del Jesus and F. Marcelloni, "Evolutionary Fuzzy Systems for Explainable Artificial Intelligence: Why, When, What for, and Where to?," in IEEE Computational Intelligence Magazine, vol. 14, no. 1, pp. 69-81, Feb. 2019, doi: 10.1109/MCI.2018.2881645. keywords: {Fuzzy systems;Data models;Data science;Fuzzy sets;Computational modeling;Task analysis;Genetic algorithms;Zadeh, Lotfi},
Résumé
Evolutionary fuzzy systems are one of the greatest advances within the area of computational intelligence. They consist of evolutionary algorithms applied to the design of fuzzy systems. Thanks to this hybridization, superb abilities are provided to fuzzy modeling in many different data science scenarios. This contribution is intended to comprise a position paper developing a comprehensive analysis of the evolutionary fuzzy systems research field. To this end, the "4 W" questions are posed and addressed with the aim of understanding the current context of this topic and its significance. Specifically, it will be pointed out why evolutionary fuzzy systems are important from an explainable point of view, when they began, what they are used for, and where the attention of researchers should be directed to in the near future in this area. They must play an important role for the emerging area of eXplainable Artificial Intelligence (XAI) learning from data.
Colecciones
  • DCCIA - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire