Mostrar el registro sencillo del ítem

dc.contributor.authorEscobar Pérez, Juan José 
dc.contributor.authorOrtega Lopera, Julio 
dc.contributor.authorDíaz García, Antonio Francisco 
dc.contributor.authorGonzález Peñalver, Jesús 
dc.contributor.authorDamas Hermoso, Miguel 
dc.date.accessioned2024-01-22T08:48:59Z
dc.date.available2024-01-22T08:48:59Z
dc.date.issued2018-08-01
dc.identifier.citationJuan José Escobar, Julio Ortega, Antonio Francisco Díaz, Jesús González, and Miguel Damas. A Power-Performance Perspective to Multiobjective Electroencephalogram Feature Selection on Heterogeneous Parallel Platforms. Journal of Computational Biology. Aug 2018. 882-893. http://doi.org/10.1089/cmb.2018.0080es_ES
dc.identifier.urihttps://hdl.handle.net/10481/87041
dc.description.abstractThis paper provides an insight on the power-performance issues related with the CPU-GPU parallel implementations of problems that frequently appear in the context of applications on bioinformatics and biomedical engineering. More specifically, we analyse the power-performance behaviour of an evolutionary parallel multi-objective electroencephalogram (EEG) feature selection procedure that evolves subpopulations of solutions with time-demanding fitness evaluation. The procedure has been implemented in OpenMP to dynamically distribute either subpopulations or individuals among devices, and uses OpenCL to evaluate the fitness of the individuals. The development of parallel codes usually implies to maximize the code efficiency, thus optimizing the achieved speedups. To follow the same trend, this paper extends and provides a more complete analysis of our previous works about the power-performance characteristics in heterogeneous CPU-GPU platforms considering different operation frequencies and evolutionary parameters such as distribution of individuals, etc. This way, different experimental configurations of the proposed procedure have been evaluated and compared with respect to a master-worker approach, not only in runtime but also considering energy consumption. The experimental results show that lower operating frequencies does not necessarily mean lower energy consumptions since energy is the product of power and time. Thus, we have observed that parallel processing not only reduces the runtime but also the energy consumed by the application despite a higher instantaneous power. Particularly, the workload distribution among both CPU and GPU cores provides the best runtime and very low energy consumption compared with the values achieved by the same alternatives executed by only CPU threads.es_ES
dc.description.sponsorshipSpanish Ministerio de Economía y Competitividad under grant TIN2015-67020-Pes_ES
dc.description.sponsorshipERDF fundes_ES
dc.language.isoenges_ES
dc.publisherMary Ann Liebert, Inc.es_ES
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs 3.0 License
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subjectHeterogeneous Parallelismes_ES
dc.subjectEnergy-aware Computinges_ES
dc.subjectDynamic Schedulinges_ES
dc.subjectEEG Classificationes_ES
dc.subjectMulti-objective Feature Selectiones_ES
dc.subjectSubpopulationses_ES
dc.titleA Power-Performance Perspective to Multiobjective Electroencephalogram Feature Selection on Heterogeneous Parallel Platformses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1089/cmb.2018.0080
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones_ES


Ficheros en el ítem

[PDF]

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License