• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Información complementaria de las Investigaciones (Datos en Bruto)
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Información complementaria de las Investigaciones (Datos en Bruto)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Datasets and free source code (software R) for the manuscript: Exploring and correcting the bias in the estimation of the Gini measure of inequality

[HTML] Datos y código fuente en el software gratuito R (733.5Kb)
Identificadores
URI: https://hdl.handle.net/10481/85964
DOI: 10.17605/OSF.IO/4YNBS
DOI: 10.30827/Digibug.85964
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Muñoz Rosas, Juan Francisco; Moya Fernández, Pablo José; Álvarez Verdejo, Encarnación
Materia
Gini index
 
Income distribution
 
Bootstrap
 
Jackknife
 
Survey sampling
 
Software R
 
Fecha
2023-12-01
Referencia bibliográfica
Muñoz, J. F., Moya, P. J. and Álvarez-Verdejo, E. (2023) R Codes for Estimators of the Gini Index. https://doi.org/10.17605/OSF.IO/4YNBS
Resumen
The aim of this document is to describe how to reproduce the results derived in the article “Exploring and correcting the bias in the estimation of the Gini measure of income inequality”, published in the journal Sociological Methods & Research. First (Section 2), we describe (load) the various R packages required for the computation of the estimators described in this article. In Section 3, we compute the parameters of the probabilistic distributions considered in simulation studies. Section 4 gives examples on how samples can be selected for the various scenarios. For both infinite and finite populations, codes for computing the various estimators of the Gini index are provided in Section 5. Box plots to investigate the effect of the skewness on the bias of the estimation of the Gini index can be seen in Section 6. For the various estimators defined in this document, Section 7 provides codes for computing empirical measures related to such estimators. In particular, functions inf.empirical.measures and fin.empirical.measures gives the: (i) Relative Bias (RB); (ii) Relative Root Mean Square Error (RRMSE); (iii) Bias Ratio (BR); (iv) Expected value based on estimates of the Gini index and; (v) Expected value based on estimates of the coefficient of skewness. Some examples are included, and they indicate how to carry out simulation studies. Finally, various estimators of the Gini index are computed using the data set ES-SILC, with size n=26. The various real data sets can be loaded using the file Datasets.RData.
 
The aim of this document is to describe how to reproduce the results derived in the article “Exploring and correcting the bias in the estimation of the Gini measure of income inequality”, published in the journal Sociological Methods & Research. First (Section 2), we describe (load) the various R packages required for the computation of the estimators described in this article. In Section 3, we compute the parameters of the probabilistic distributions considered in simulation studies. Section 4 gives examples on how samples can be selected for the various scenarios. For both infinite and finite populations, codes for computing the various estimators of the Gini index are provided in Section 5. Box plots to investigate the effect of the skewness on the bias of the estimation of the Gini index can be seen in Section 6. For the various estimators defined in this document, Section 7 provides codes for computing empirical measures related to such estimators. In particular, functions inf.empirical.measures and fin.empirical.measures gives the: (i) Relative Bias (RB); (ii) Relative Root Mean Square Error (RRMSE); (iii) Bias Ratio (BR); (iv) Expected value based on estimates of the Gini index and; (v) Expected value based on estimates of the coefficient of skewness. Some examples are included, and they indicate how to carry out simulation studies. Finally, various estimators of the Gini index are computed using the data set ES-SILC, with size n=26. The various real data sets can be loaded using the file Datasets.RData.
 
Colecciones
  • Información complementaria de las Investigaciones (Datos en Bruto)

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias