• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Comunicaciones congresos, conferencias, ...
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Comunicaciones congresos, conferencias, ...
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving short-term prediction from MCI to AD by applying searchlight analysis

[PDF] Improving short term.pdf (364.7Ko)
Identificadores
URI: https://hdl.handle.net/10481/85908
DOI: 10.1109/ISBI.2016.7493199
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Arco Martín, Juan Eloy; Ramírez Pérez De Inestrosa, Javier; García Puntonet, Carlos; Gorriz Sáez, Juan Manuel; Ruz Cámara, María
Date
2016-04
Résumé
Alzheimer's disease (AD) is the most common cause of dementia. Nowadays, 44 million people worldwide suffer from this neurodegenerative disease. Fortunately, the use of new technologies can help doctors in diagnosing this disease in an increasingly early stage, which is vital to prevent its advance. In this work we have developed a new automatic method to predict if patients suffering from mild cognitive impairment (MCI) will develop AD within one year or, conversely, its impairment will remain stable. This technique is based on the so-called Searchlight, a widely known approach in fMRI but which has not been previously used with structural images. Besides analyzing the intensity of the voxels in each of the subregions defined by the Searchlight, data from two neuro-psychological tests were used during the classification process, achieving an accuracy of 84%.
Colecciones
  • DTSTC - Comunicaciones congresos, conferencias, ...

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire