• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Teoría de la Señal, Telemática y Comunicaciones
  • DTSTC - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ensembling shallow siamese architectures to assess functional asymmetry in Alzheimer’s disease progression

[PDF] manuscript copia.pdf (6.876Mb)
Identificadores
URI: https://hdl.handle.net/10481/85826
DOI: 10.1016/j.asoc.2023.109991
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Arco Martín, Juan Eloy; Ortiz García, Andrés; Castillo Barnes, Diego; Gorriz Sáez, Juan Manuel; Ramírez Pérez De Inestrosa, Javier
Materia
Deep learning
 
Siamese network
 
Alzheimer’s disease
 
Asymmetry
 
PET
 
Computer-aided-diagnosis
 
Date
2023-02
Abstract
The development of methods based on artificial intelligence for the classification of medical imaging is widespread. Given the high dimensionality of this type of images, it is imperative to use the information contained in relevant regions for further classification. This information can be derived from the morphology of the region of interest, in terms of measurements such as area, perimeter, etc. However, the performance of the classification system strongly depends on the correct selection of the type of information employed. We propose in this work an alternative for evaluating differences between brain regions that relies on the basis of Siamese neural networks. Initially, brain scans are delimited by an anatomical atlas. Next, each pair of regions of interest is then entered into a Siamese network, which is formed by relating the distance between the two individual outputs and the corresponding label. Features are extracted from the embeddings of the final linear layer. Finally, the classification is performed by combining the characteristics of each pair of regions into an ensemble architecture. Performance was assessed by determining how asymmetry between the right and left hemispheres changes during progressive brain degeneration, from mild cognitive impairment to severe atrophy associated with Alzheimer’s disease (AD). Our method discriminates with an accuracy of 98.95% between controls and AD patients, and most important, it predicts the cognitive decline in patients suffering from mild cognitive impairment that will develop AD before it occurs with an accuracy of 78.41%. These results demonstrate the applicability of our proposal in the study of a wide range of pathologies.
Collections
  • DTSTC - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback