Analytic saddle spheres in S3 are equatorial
Metadatos
Afficher la notice complèteEditorial
Springer Nature
Materia
53A10 53C42
Date
2023-10-30Referencia bibliográfica
Gálvez, J.A., Mira, P. & Tassi, M.P. Analytic saddle spheres in are equatorial. Math. Ann. (2023). [https://doi.org/10.1007/s00208-023-02741-4]
Patrocinador
Projects PID2020-118137GB-I00; CEX2020-001105-M; MCIN/AEI /10.13039/501100011033; Junta de Andalucia grant no. P18-FR-4049; CARM; Programa Regional de Fomento de la Investigación, Fundación Séneca-Agencia de Ciencia y Tecnología Región de Murcia, reference 21937/PI/22; Projects 2020/03431-6; 2021/10181-9, funded by São Paulo Research Foundation (FAPESP)Résumé
A theorem by Almgren establishes that any minimal 2-sphere immersed in
is a totally geodesic equator. In this paper we give a purely geometric extension of Almgren’s result, by showing that any immersed, real analytic 2-sphere in
that is saddle, i.e., of non-positive extrinsic curvature, must be an equator of
. We remark that, contrary to Almgren’s theorem, no geometric PDE is imposed on the surface. The result is not true for
spheres.