Evidence for the charge asymmetry in pp → t¯t production at √s = 13 TeV with the ATLAS detector
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Materia
Hadron-Hadron Scattering Top Physics
Fecha
2023-08-16Referencia bibliográfica
The ATLAS collaboration., Aad, G., Abbott, B. et al. Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector. J. High Energ. Phys. 2023, 77 (2023). [https://doi.org/10.1007/JHEP08(2023)077]
Patrocinador
EU-ESF; GenT Programmes Generalitat Valenciana, Spain; La Caixa Banking Foundation; PROMETEO; H2020 Marie Skłodowska-Curie Actions MSCA; CERN; European Research Council ERC; European Cooperation in Science and Technology COST; Generalitat de Catalunya; Agencia Nacional de Promoción Científica y Tecnológica ANPCyT; Ministerio de Ciencia e Innovación MICINN; Horizon 2020; European Regional Development Fund ERDF; Agencia Nacional de Investigación y Desarrollo ANID; PIC (Spain)Resumen
Inclusive and differential measurements of the top–antitop (Formula presented.) charge asymmetry (Formula presented.) and the leptonic asymmetry (Formula presented.) are presented in proton–proton collisions at s = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive (Formula presented.) charge asymmetry is measured to be (Formula presented.), which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the (Formula presented.) system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients.