Diffraction Phenomena in Time-Varying Metal-Based Metasurfaces
Metadatos
Afficher la notice complèteAuteur
Alex Amor, Antonio; Moreno Rodríguez, Salvador; Padilla De La Torre, Pablo; Valenzuela Valdes, Juan FranciscoEditorial
American Physical Society
Date
2023-04-05Referencia bibliográfica
antonio Alex Amor et al. Diffraction Phenomena in Time-Varying Metal-Based Metasurfaces. Phys. Rev. Applied 19, 044014 (2023)[DOI: 10.1103/PhysRevApplied.19.044014]
Patrocinador
Spanish Government ID2020-112545RB-C54 RTI2018-102002-A-I00; Junta de Andalucia B-TIC-402-UGR18 A-TIC-608- UGR20 PYC20-RE-012-UGR P18.RT.4830; Leonardo Grant of the BBVA Foundation; BBVA FoundationRésumé
This paper presents an analytical framework for the analysis of time-varying metal-based metamaterials.
Specifically, we particularize the study to time-modulated metal-air interfaces embedded between two
different semi-infinite media that are illuminated by monochromatic plane waves of frequency ω0. The
formulation is based on a Floquet-Bloch modal expansion, which takes into account the time periodicity
of the structure (Ts = 2π/ωs) and integral-equation techniques. It allows us to extract the reflection and
transmission coefficients as well as to derive nontrivial features about the dynamic response and dispersion
curves of time-modulated metal-based screens. In addition, the proposed formulation has an associated
analytical equivalent circuit that gives a physical insight into the diffraction phenomenon. Similarities
and differences between space- and time-modulated metamaterials are discussed via the proposed circuit
model. Finally, some analytical results are presented to validate the present framework. Good agreement
is observed with numerical computations provided by a self-implemented finite-difference time-domain
(FDTD) method. Interestingly, the present results suggest that time-modulated metal-based screens can be
used as pulsed sources (when ωs ω0), beam formers (ωs ∼ ω0) to redirect energy in specific regions of
space, and analog samplers (ωs ω0).