Kinetic Effects of Ciprofloxacin, Carbamazepine, and Bisphenol on Biomass in Membrane Bioreactor System at Low Temperatures to Treat Urban Wastewater
Metadatos
Afficher la notice complèteAuteur
Antiñolo Bermúdez, Laura; Martín-Luis, Antonio; Leyva Díaz, Juan Carlos; Muñio Martínez, María Del Mar; Poyatos Capilla, José ManuelEditorial
MDPI
Materia
Wastewater treatment Bisphenol A Carbamazepine Ciprofloxacin Temperature effect Membrane bioreactor Respirometric test
Date
2023-04-07Referencia bibliográfica
Antiñolo Bermúdez, L.; Martín-Luis, A.; Leyva Díaz, J.C.; Muñío Martínez, M.d.M.; Poyatos Capilla, J.M. Kinetic Effects of Ciprofloxacin, Carbamazepine, and Bisphenol on Biomass in Membrane Bioreactor System at Low Temperatures to Treat Urban Wastewater. Membranes 2023, 13, 419. [https://doi.org/10.3390/membranes13040419]
Patrocinador
Spanish Government RTI2018-101270-B-I00Résumé
This study analysed the kinetic results in the presence and absence of micropollutants (bisphenol A, carbamazepine, ciprofloxacin, and the mixture of the three compounds) obtained with respirometric tests with mixed liquor and heterotrophic biomass in a membrane bioreactor (MBR) working for two different hydraulic retention times (12-18 h) and under low-temperature conditions (5-8 degrees C). Independently of the temperature, the organic substrate was biodegraded faster over a longer hydraulic retention time (HRT) with similar doping, which was probably due to the longer contact time between the substrate and microorganisms within the bioreactor. However, low values of temperature negatively affected the net heterotrophic biomass growth rate, with reductions from 35.03 to 43.66% in phase 1 (12 h HRT) and from 37.18 to 42.77% in phase 2 (18 h HRT). The combined effect of the pharmaceuticals did not worsen the biomass yield compared with the effects caused individually.