Show simple item record

dc.contributor.authorGarcía Verdugo de Lucas, Carlos
dc.date.accessioned2023-01-12T12:40:11Z
dc.date.available2023-01-12T12:40:11Z
dc.date.issued2022-12-01
dc.identifier.citationC. García-Verdugo... [et al.]. Does insular adaptation to subtropical conditions promote loss of plasticity over time?, Perspectives in Plant Ecology, Evolution and Systematics, Volume 58, 2023, 125713, ISSN 1433-8319, [https://doi.org/10.1016/j.ppees.2022.125713]es_ES
dc.identifier.urihttps://hdl.handle.net/10481/78954
dc.description.abstractPhenotypic plasticity (i.e. the ability to express different phenotypes under changing environmental conditions) is thought to play a key role in habitat adaptation, but little is known about how trait plasticity evolves following dispersal into novel island habitats. We hypothesize that shifts from seasonal Mediterranean climates to more stable (subtropical) island conditions would promote a net reduction in trait plasticity over time. To test this hypothesis, we set two common gardens with contrasting environmental (low resource vs. mesic) conditions, where we grew seedlings of wild olive (Olea europaea var. sylvestris) populations that represented two Canary Island lineages with different colonization times (old vs. young) and their Mediterranean ancestral lineage (N = 275 individuals). Plasticity was assessed for 12 morphological, photosynthetic and chemical traits by (i) subjecting half of the seedlings to simulated herbivore browsing (50% of aerial biomass removal) and (ii) comparing phenotypic values between both common garden settings. Simulated herbivore browsing induced few plastic responses, mostly restricted to photosynthetic traits, but these were similarly displayed by all lineages. Comparisons between common gardens revealed a contrasting response between the Mediterranean and both subtropical island lineages in leaf phenotypes. Furthermore, the older island lineage showed an overall lack of plasticity (i.e. environmental canalization) in morphological and chemical traits. These results suggest that, unlike photosynthetic traits that are fundamental for fast acclimation to environmental shifts, some developmental traits may lose plasticity over time as a result of phenotypic adjustment to subtropical insular conditions.es_ES
dc.description.sponsorshipVincenc Mut fellowship (Conselleria d'Innovacio, Recerca i Turisme, Govern de les Illes Balears) Vincenc Mut fellowship (European Social Fund)es_ES
dc.description.sponsorshipSpanish Government RTI2018-099322-B-I00 RYC-2013-13230es_ES
dc.description.sponsorshipUniversidad de Granada / CBUAes_ES
dc.language.isoenges_ES
dc.publisherElsevieres_ES
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectEnvironmental canalizationes_ES
dc.subjectGenetic accommodationes_ES
dc.subjectIsland colonizationes_ES
dc.subjectOlea europaeaes_ES
dc.subjectPhenotypic plasticityes_ES
dc.subjectSubtropical habitatses_ES
dc.titleDoes insular adaptation to subtropical conditions promote loss of plasticity over time?es_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.identifier.doi10.1016/j.ppees.2022.125713
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones_ES


Files in this item

[PDF]

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internacional
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional