Time- and Amplitude-Controlled Power Noise Generator against SPA Attacks for FPGA-Based IoT Devices
Metadata
Show full item recordAuthor
Parrilla Roure, Luis; García Ríos, Antonio; Castillo Morales, María Encarnación; Rodríguez Bolívar, Salvador; López Villanueva, Juan AntonioEditorial
MDPI
Materia
Power noise generation Power masking SPA attacks Power watermarking IoT
Date
2022-09-10Referencia bibliográfica
Parrilla, L... [et al.]. Time- and Amplitude-Controlled Power Noise Generator against SPA Attacks for FPGA-Based IoT Devices. J. Low Power Electron. Appl. 2022, 12, 48. [https://doi.org/10.3390/jlpea12030048]
Sponsorship
Junta de Andalucia; European Commission B-TIC-588-UGR20Abstract
Power noise generation for masking power traces is a powerful countermeasure against
Simple Power Analysis (SPA), and it has also been used against Differential Power Analysis (DPA) or
Correlation Power Analysis (CPA) in the case of cryptographic circuits. This technique makes use of
power consumption generators as basic modules, which are usually based on ring oscillators when
implemented on FPGAs. These modules can be used to generate power noise and to also extract
digital signatures through the power side channel for Intellectual Property (IP) protection purposes.
In this paper, a new power consumption generator, named Xored High Consuming Module (XHCM),
is proposed. XHCM improves, when compared to others proposals in the literature, the amount of
current consumption per LUT when implemented on FPGAs. Experimental results show that these
modules can achieve current increments in the range from 2.4 mA (with only 16 LUTs on Artix-7
devices with a power consumption density of 0.75 mW/LUT when using a single HCM) to 11.1 mA
(with 67 LUTs when using 8 XHCMs, with a power consumption density of 0.83 mW/LUT). Moreover,
a version controlled by Pulse-Width Modulation (PWM) has been developed, named PWM-XHCM,
which is, as XHCM, suitable for power watermarking. In order to build countermeasures against
SPA attacks, a multi-level XHCM (ML-XHCM) is also presented, which is capable of generating
different power consumption levels with minimal area overhead (27 six-input LUTS for generating
16 different amplitude levels on Artix-7 devices). Finally, a randomized version, named RML-XHCM,
has also been developed using two True Random Number Generators (TRNGs) to generate current
consumption peaks with random amplitudes at random times. RML-XHCM requires less than
150 LUTs on Artix-7 devices. Taking into account these characteristics, two main contributions
have been carried out in this article: first, XHCM and PWM-XHCM provide an efficient power
consumption generator for extracting digital signatures through the power side channel, and on the
other hand, ML-XHCM and RML-XHCM are powerful tools for the protection of processing units
against SPA attacks in IoT devices implemented on FPGAs.