Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space
Identificadores
URI: http://hdl.handle.net/10481/76571Metadata
Show full item recordEditorial
Tohoku Daigaku Suugaku Kyoshitsu
Materia
Lorentz-Minkowski space Zero mean curvature Separable surface
Date
2020-05-15Referencia bibliográfica
Published version: Seher Kaya. Rafael López. "Classification of zero mean curvature surfaces of separable type in Lorentz-Minkowski space." Tohoku Math. J. (2) 74 (2) 263 - 286, 2022. [https://doi.org/10.2748/tmj.20210120a]
Sponsorship
MTM2017-89677-P, MINECO/AEI/FEDER, UEAbstract
Consider the Lorentz-Minkowski 3-space
L
3
with the metric
d
x
2
+
d
y
2
−
d
z
2
in canonical coordinates
(
x
,
y
,
z
)
. A surface in
L
3
is said to be separable if it satisfies an equation of the form
f
(
x
)
+
g
(
y
)
+
h
(
z
)
=
0
for some smooth functions
f
,
g
and
h
defined in open intervals of the real line. In this article we classify all zero mean curvature surfaces of separable type, providing a method of construction of examples.