Single-leg mechanical performance and inter-leg asymmetries during bilateral countermovement jumps: A comparison of different calculation methods
Metadatos
Afficher la notice complèteAuteur
Janicijevic, Danica; Pérez Castilla, Alejandro; Fernández Revelles, Andrés Bernardo; García Ramos, AmadorEditorial
Elsevier
Materia
Bilateral deficit Force platform Kinetic Testing
Date
2022-05-10Referencia bibliográfica
Danica Janicijevic... [et al.]. Single-leg mechanical performance and inter-leg asymmetries during bilateral countermovement jumps: A comparison of different calculation methods, Gait & Posture, Volume 96, 2022, Pages 47-52, ISSN 0966-6362, [https://doi.org/10.1016/j.gaitpost.2022.05.012]
Patrocinador
Ministry of Education, Science & Technological Development, Serbia 451-03-68/2020-14/200015 451-03-68/2020-14/200021; Universidad de Granada/CBUARésumé
Background: The possibility to selectively assess the force exerted by each leg during bilateral jumps has allowed
sport scientists to explore inter-leg asymmetries, this metric being a rich source of research due to its potential
applications to improve sports performance and reduce the risk of injury. The purpose of this study was to
explore the reliability and agreement of single-leg mechanical performance and inter-leg asymmetry variables
obtained by two procedures of analysis (Synchronous [simultaneous jump detection for both legs] and Asynchronous
[specific jump detection for each leg]) during bilateral countermovement jumps (CMJs).
Method: During a single testing session, 74 participants performed 5 maximal height bilateral CMJs on dual force
platforms (Kistler, model 9260AA6, Winterthur, Switzerland), and the 2 trials that differed the least in terms of
squat depth and jump height were considered for statistical analyses. The following mechanical variables were
calculated separately for each leg using the Synchronous and Asynchronous procedures: mean force, peak force,
and propulsive impulse.
Results: The procedures showed comparable reliability, except for mean force and propulsive impulse of the left
leg (higher for the Asynchronous procedure). The agreement between the procedures was very high, while the
most reliable mechanical variable was mean force (CV≈2.9%, ICC≈0.98), followed by peak force (CV≈4.4%,
ICC≈0.96) and propulsive impulse (CV≈6.4%, ICC≈0.91). Reliability of inter-leg asymmetries was greater using
mean and peak force (ICC range=0.74–0.82) than using propulsive impulse (ICC range = 0.65–0.66).
Significance: Both Synchronous and Asynchronous procedures can be used to evaluate single-leg mechanical
performance (mean force, peak force, and propulsive impulse) and asymmetries, whereas mean force should be
used to evaluate single-leg mechanical performance and mean or peak force to assess asymmetries.