• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Modelización y Predicción con Datos Funcionales (FQM307)
  • FQM307 - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Modelización y Predicción con Datos Funcionales (FQM307)
  • FQM307 - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A general piecewise multi-state survival model: Application to breast cancer

[PDF] Versión aceptada del artículo previa a la versión publicada (1.388Mb)
Identificadores
URI: http://hdl.handle.net/10481/69357
DOI: https://doi.org/10.1007/s10260-019-00505-6
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Ruiz Castro, Juan Eloy; Zenga, Mariangela
Editorial
Springer
Materia
Survival
 
Breast Cancer
 
Piecewise Markov model
 
Multi-state model
 
Date
2019-12-17
Referencia bibliográfica
Ruiz-Castro, J.E., Zenga, M. A general piecewise multi-state survival model: application to breast cancer. Stat Methods Appl 29, 813–843 (2020). https://doi.org/10.1007/s10260-019-00505-6
Sponsorship
Ministerio de Economía y Competitividad FQM-307; European Regional Development Fund (ERDF) MTM2017-88708-P; University of Milano-Bicocca 2014-ATE-0228
Abstract
Multi-state models are considered in the field of survival analysis for modelling illnesses that evolve through several stages over time. Multi-state models can be developed by applying several techniques, such as non-parametric, semi-parametric and stochastic processes, particularly Markov processes. When the development of an illness is being analysed, its progression is tracked periodically. Medical reviews take place at discrete times, and a panel data analysis can be formed. In this paper, a discrete-time piecewise non-homogeneous Markov process is constructed for modelling and analysing a multi-state illness with a general number of states. The model is built, and relevant measures, such as survival function, transition probabilities, mean total times spent in a group of states and the conditional probability of state change, are determined. A likelihood function is built to estimate the parameters and the general number of cut-points included in the model. Time-dependent covariates are introduced, the results are obtained in a matrix algebraic form and the algorithms are shown. The model is applied to analyse the behaviour of breast cancer. A study of the relapse and survival times of 300 breast cancer patients who have undergone mastectomy is developed. The results of this paper are implemented computationally with MATLAB and R.
Collections
  • FQM307 - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback