• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Modelización y Predicción con Datos Funcionales (FQM307)
  • FQM307 - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Modelización y Predicción con Datos Funcionales (FQM307)
  • FQM307 - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories

[PDF] Versión aceptada del artículo previa a la versión publicada (1.331Mb)
Identificadores
URI: http://hdl.handle.net/10481/69124
DOI: https://doi.org/10.1016/j.matcom.2020.07.006
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Ruiz Castro, Juan Eloy; Acal González, Christian José; Aguilera Del Pino, Ana María; Aguilera Morillo, María del Carmen; Roldán Aranda, Juan Bautista
Editorial
Elsevier
Materia
Phase-type distribution (PH)
 
Linear-Phase-type distribution (LPH)
 
Functional principal components
 
Basis expansion of curves
 
P-splines
 
Resistive memories
 
Date
2020-07-10
Referencia bibliográfica
Juan E. Ruiz-Castro, Christian Acal, Ana M. Aguilera, M. Carmen Aguilera-Morillo, Juan B. Roldán, Linear-Phase-Type probability modelling of functional PCA with applications to resistive memories, Mathematics and Computers in Simulation, Volume 186, 2021, Pages 71-79, ISSN 0378-4754, https://doi.org/10.1016/j.matcom.2020.07.006
Sponsorship
Spanish Ministry of Science, Innovation and Universities (FEDER, Spain program) TEC2017-84321-C4-3-R MTM2017-88708-P IJCI-2017-34038; PhD grant (Spain) FPU18/01779
Abstract
Functional principal component analysis (FPCA) based on Karhunen–Loève (K–L) expansion allows to describe the stochastic evolution of the main characteristics associated to multiple systems and devices. Identifying the probability distribution of the principal component scores is fundamental to characterize the whole process. The aim of this work is to consider a family of statistical distributions that could be accurately adjusted to a previous transformation. Then, a new class of distributions, the linear-phase-type, is introduced to model the principal components. This class is studied in detail in order to prove, through the K–L expansion, that certain linear transformations of the process at each time point are phase-type distributed. This way, the one-dimensional distributions of the process are in the same linear-phase-type class. Finally, an application to model the reset process associated with resistive memories is developed and explained.
Collections
  • FQM307 - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback