• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: SISDIAL. Sistemas de Diálogo Hablado y Multimodal (TIC018)
  • TIC018 - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: SISDIAL. Sistemas de Diálogo Hablado y Multimodal (TIC018)
  • TIC018 - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive dialogue management using intent clustering and fuzzy rules

[PDF] 2020___Expert_systems___Peer_reviewed.pdf (314.7Kb)
Identificadores
URI: http://hdl.handle.net/10481/64763
DOI: 10.1111/exsy.12630
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Griol Barres, David; Callejas Carrión, Zoraida; Molina, José Manuel; Sanchis, Araceli
Editorial
Wiley
Date
2020-09-09
Referencia bibliográfica
Griol, D, Callejas, Z, Molina, JM, Sanchis, A. Adaptive dialogue management using intent clustering and fuzzy rules. Expert Systems. 2020; e12630. [https://doi.org/10.1111/exsy.12630]
Sponsorship
The research leading to these results has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 823907 (MENHIR project: https://menhir-project.eu), and the Spanish project TEC2017-88048-C2-2-R.
Abstract
Conversational systems have become an element of everyday life for billions of users who use speech-based interfaces to services, engage with personal digital assistants on smartphones, social media chatbots, or smart speakers. One of the most complex tasks in the development of these systems is to design the dialogue model, the logic that provided a user input selects the next answer. The dialogue model must also consider mechanisms to adapt the response of the system and the interaction style according to different groups and user profiles. Rule-based systems are difficult to adapt to phenomena that were not taken into consideration at design-time. However, many of the systems that are commercially available are based on rules, and so are the most widespread tools for the development of chatbots and speech interfaces. In this paper, we present a proposal to: i) automatically generate the dialogue rules from a dialogue corpus through the use of evolving algorithms, ii) adapt the rules according to the detected user intention. We have evaluated our proposal with several conversational systems of different application domains, from which our approach provided an efficient way for adapting a set of dialogue rules considering user utterance clusters.
Collections
  • OpenAIRE (Open Access Infrastructure for Research in Europe)
  • TIC018 - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback