Industrial-Scale Decontamination Procedure Effects on the Content of Acaricides, Heavy Metals and Antioxidant Capacity of Beeswax
Metadata
Show full item recordAuthor
Navarro Hortal, María Dolores; Sánchez González, Cristina; Varela López, Alfonso; Llopis González, Juan; Aranda Ramírez, Pilar; Quiles Morales, José LuisEditorial
MDPI
Materia
Beeswax decontamination Pesticides Monoesters Hydrocarbons Chemical elements Flavonoids Total phenols Adulteration
Date
2019-04-17Referencia bibliográfica
Navarro-Hortal, M.D.; Orantes-Bermejo, F.J.; Sánchez-González, C.; Varela-López, A.; Giampieri, F.; Torres Fernández-Piñar, C.; Serra-Bonvehí, J.; Forbes-Hernández, T.Y.; Reboredo-Rodríguez, P.; Llopis, J.; Aranda, P.; Battino, M.; Quiles, J.L. Industrial-Scale Decontamination Procedure Effects on the Content of Acaricides, Heavy Metals and Antioxidant Capacity of Beeswax. Molecules 2019, 24, 1518. [doi:10.3390/molecules24081518]
Sponsorship
The present study was partially funded by the “National Beekeeping Aid Program (Programa Nacional de Ayudas a la Apicultura)”, cofounded by the European Union and assigned to Spanish FEGA and FEAGA agencies (2016).Abstract
Beeswax is useful for the beekeeping sector but also for the agro-food, pharmaceutical or cosmetics sectors. Frequently, this bee product is contaminated with pesticides reducing its utility and causing the decline in its market. This study aimed to prove the effectiveness of an industrial-scale decontamination method in removing acaricides from beeswax. Chlorfenvinphos and coumaphos decrease was higher than 90%, whereas tau fluvalinate decrease was only 30%. No changes were observed in the beeswax content of hydrocarbons and monoesters, whereas a decrease in the concentrations of Ca, Fe, Zn, Hg, Mn and P, and an increase in the concentrations of As and Si were found after the decontamination. Filtration reduced total phenolics, flavonoids and the antioxidant capacity of the lipophilic extract. These results demonstrate that the industrial method used was as effective as the method previously tested on a laboratory scale. The study also contributes to a better knowledge and characterization of beeswax, specially related to trace and ultra-trace elements and antioxidant capacity. Moreover, it offers the chance to further develop a method to effectively detect wax adulterations based on the chemical elements profile.