• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fusion Estimation from Multisensor Observations with Multiplicative Noises and Correlated Random Delays in Transmission

[PDF] CaballeroAguila_RandomDelays.pdf (369.2Kb)
Identificadores
URI: http://hdl.handle.net/10481/47384
DOI: 10.3390/math5030045
ISSN: 2227-7390
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Caballero-Águila, R.; Hermoso-Carazo, Aurora; Linares-Pérez, Josefa
Editorial
MDPI
Materia
Fusion estimation
 
Sensor networks
 
Random parameter matrices
 
Multiplicative noises
 
Random delays
 
Date
2017-09-04
Referencia bibliográfica
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Fusion Estimation from Multisensor Observations with Multiplicative Noises and Correlated Random Delays in Transmission. Mathematics, 5(3): 45 (2017). [http://hdl.handle.net/10481/47384]
Sponsorship
This research is supported by Ministerio de Economía y Competitividad and Fondo Europeo de Desarrollo Regional FEDER (grant No. MTM2014-52291-P).
Abstract
In this paper, the information fusion estimation problem is investigated for a class of multisensor linear systems affected by different kinds of stochastic uncertainties, using both the distributed and the centralized fusion methodologies. It is assumed that the measured outputs are perturbed by one-step autocorrelated and cross-correlated additive noises, and also stochastic uncertainties caused by multiplicative noises and randomly missing measurements in the sensor outputs are considered. At each sampling time, every sensor output is sent to a local processor and, due to some kind of transmission failures, one-step correlated random delays may occur. Using only covariance information, without requiring the evolution model of the signal process, a local least-squares (LS) filter based on the measurements received from each sensor is designed by an innovation approach. All these local filters are then fused to generate an optimal distributed fusion filter by a matrix-weighted linear combination, using the LS optimality criterion. Moreover, a recursive algorithm for the centralized fusion filter is also proposed and the accuracy of the proposed estimators, which is measured by the estimation error covariances, is analyzed by a simulation example.
Collections
  • DEIO - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback