• español 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Ver ítem 
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Química Inorgánica
  • DQI - Artículos
  • Ver ítem
  •   DIGIBUG Principal
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Química Inorgánica
  • DQI - Artículos
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Monitoring lactoferrin iron levels by fluorescence resonance energy transfer: A combined chemical and computational study

[PDF] Carmona_Lactoferrin.pdf (836.0Kb)
Identificadores
URI: http://hdl.handle.net/10481/47218
DOI: 10.1007/s00775-013-1088-z
ISSN: 0949-8257
ISSN: 1432-1327
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Ver Estadísticas de uso
Metadatos
Mostrar el registro completo del ítem
Autor
Carmona Rodríguez-Acosta, Fernando; Muñoz-Robles, Víctor; Cuesta Martos, Rafael; Gálvez Rodríguez, Natividad; Capdevila, Mercè; Maréchal, Jean-Didier; Domínguez Vera, José Manuel
Editorial
Springer Verlang
Materia
FRET
 
Lactoferrin
 
Docking
 
Iron metabolism
 
Protein-ligand docking
 
Structural analysis
 
Fecha
2014
Referencia bibliográfica
Carmona Rodríguez-Acosta, F.; et al. Monitoring lactoferrin iron levels by fluorescence resonance energy transfer: A combined chemical and computational study. Journal of Biological Inorganic Chemistry, 19(3): 439-447 (2014). [http://hdl.handle.net/10481/47218]
Patrocinador
This work was supported by MINECO and FEDER (projects CTQ2012-32236, CTQ2011-23336, and BIO2012-39682-C02-02) and BIOSEARCH SA. F.C. and V.M.R. are grateful to the Spanish MINECO for FPI fellowships.
Resumen
Three forms of lactoferrin (Lf) that differed in their levels of iron loading (Lf, LfFe, and LfFe2) were simultaneously labeled with the fluorophores AF350 and AF430. All three resulting fluorescent lactoferrins exhibited fluorescence resonance energy transfer (FRET), but they all presented different FRET patterns. Whereas only partial FRET was observed for Lf and LfFe, practically complete FRET was seen for the holo form (LfFe2). For each form of metal-loaded lactoferrin, the AF350–AF430 distance varied depending on the protein conformation, which in turn depended on the level of iron loading. Thus, the FRET patterns of these lactoferrins were found to correlate with their iron loading levels. In order to gain greater insight into the number of fluorophores and the different FRET patterns observed (i.e., their iron levels), a computational analysis was performed. The results highlighted a number of lysines that have the greatest influence on the FRET profile. Moreover, despite the lack of an X-ray structure for any LfFe species, our study also showed that this species presents modified subdomain organization of the N-lobe, which narrows its iron-binding site. Complete domain rearrangement occurs during the LfFe to LfFe2 transition. Finally, as an example of the possible applications of the results of this study, we made use of the FRET fingerprints of these fluorescent lactoferrins to monitor the interaction of lactoferrin with a healthy bacterium, namely Bifidobacterium breve. This latter study demonstrated that lactoferrin supplies iron to this bacterium, and suggested that this process occurs with no protein internalization.
Colecciones
  • DQI - Artículos

Mi cuenta

AccederRegistro

Listar

Todo DIGIBUGComunidades y ColeccionesPor fecha de publicaciónAutoresTítulosMateriaFinanciaciónPerfil de autor UGREsta colecciónPor fecha de publicaciónAutoresTítulosMateriaFinanciación

Estadísticas

Ver Estadísticas de uso

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contacto | Sugerencias