• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises

[PDF] CaballeroAguila_MultisensorDelayed.pdf (2.105Mb)
Identificadores
URI: http://hdl.handle.net/10481/35298
DOI: 10.1155/2014/958474
ISSN: 1024-123X
ISSN: 1563-5147
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Caballero-Águila, R.; Hermoso-Carazo, Aurora; Linares-Pérez, Josefa
Editorial
Hindawi Publishing Corporation
Materia
Análisis de covarianza
 
Analysis of covariance
 
Funciones recursivas
 
Recursive functions
 
Detectores
 
Detectors
 
Algoritmos
 
Algorithms
 
Date
2014
Referencia bibliográfica
Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J. Covariance-Based Estimation from Multisensor Delayed Measurements with Random Parameter Matrices and Correlated Noises. Mathematical Problems in Engineering, 2014: 958474 (2014). [http://hdl.handle.net/10481/35298]
Abstract
The optimal least-squares linear estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems subject to randomly delayed measurements with different delay rates. For each sensor, a different binary sequence is used to model the delay process. The measured outputs are perturbed by both random parameter matrices and one-step autocorrelated and cross correlated noises. Using an innovation approach, computationally simple recursive algorithms are obtained for the prediction, filtering, and smoothing problems, without requiring full knowledge of the state-space model generating the signal process, but only the information provided by the delay probabilities and the mean and covariance functions of the processes (signal, random parameter matrices, and noises) involved in the observation model. The accuracy of the estimators is measured by their error covariance matrices, which allow us to analyze the estimator performance in a numerical simulation example that illustrates the feasibility of the proposed algorithms.
Collections
  • DEIO - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback