• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Estadística e Investigación Operativa
  • DEIO - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian estimation in a high dimensional parameter framework

[PDF] Bosq_Bayesian.pdf (403.2Ko)
Identificadores
URI: http://hdl.handle.net/10481/33445
DOI: 10.1214/14-EJS935
ISSN: 1935-7524
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Bosq, Denis; Ruiz-Medina, María Dolores
Editorial
Institute of Mathematical Statistics
Materia
Asymptotic relative efficiency
 
Bayesian estimation
 
Hilbert valued Gaussian random variable
 
Hilbert valued Poisson process
 
Date
2014
Referencia bibliográfica
Bosq, D.; Ruiz-Medina, M.D. Bayesian estimation in a high dimensional parameter framework. Electronic Journal of Statistics, 8(1): 1604-1640 (2014). [http://hdl.handle.net/10481/33445]
Patrocinador
This work has been supported in part by projects MTM2012-32674 of the DGI (co-funded with FEDER funds), MEC, Spain.
Résumé
Sufficient conditions are derived for the asymptotic efficiency and equivalence of componentwise Bayesian and classical estimators of the infinite-dimensional parameters characterizing l2 valued Poisson process, and Hilbert valued Gaussian random variable models. Conjugate families are considered for the Poisson and Gaussian univariate likelihoods, in the Bayesian estimation of the components of such infinite-dimensional parameters. In the estimation of the functional mean of a Hilbert valued Gaussian random variable, sufficient and necessary conditions, that ensure a better performance of the Bayes estimator with respect to the classical one, are also obtained for the finite-sample size case. A simulation study is carried out to provide additional information on the relative efficiency of Bayes and classical estimators in a high-dimensional framework.
Colecciones
  • DEIO - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire