• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Óptica
  • DO - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Óptica
  • DO - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalization of Zernike polynomials for regular portions of circles and ellipses

[PDF] Navarro_ZernikePolynomials.pdf (1.820Mb)
Identificadores
URI: http://hdl.handle.net/10481/33316
DOI: 10.1364/OE.22.021263
ISSN: 1094-4087
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Navarro, Rafael; López, José L.; Díaz Navas, José Antonio; Pérez Sinusía, Ester
Editorial
Optical Society of America
Materia
Mathematical methods in physics
 
Aberration expansions
 
Diffraction optics
 
Wave-front sensing
 
Date
2014
Referencia bibliográfica
Navarro, R.; et al. Generalization of Zernike polynomials for regular portions of circles and ellipses. Optic Express, 22(18): 21263-21279 (2014). [http://hdl.handle.net/10481/33316]
Sponsorship
This research was supported by the Spanish Ministry of Economía y Competitividad and the European Union, grant FIS2011-22496, and by the Government of Aragón, research group E99.
Abstract
Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit circle. Here, we present a generalization of this Zernike basis for a variety of important optical apertures. On the contrary to ad hoc solutions, most of them based on the Gram-Schmidt orthonormalization method, here we apply the diffeomorphism (mapping that has a differentiable inverse mapping) that transforms the unit circle into an angular sector of an elliptical annulus. In this way, other apertures, such as ellipses, rings, angular sectors, etc. are also included as particular cases. This generalization, based on in-plane warping of the basis functions, provides a unique solution and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both, the general form and the explicit expressions for most common, elliptical and annular apertures are provided.
Collections
  • DO - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback