• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks

[PDF] 2011 AAP.pdf (751.6Kb)
Identificadores
URI: http://hdl.handle.net/10481/24401
ISSN: 0001-4575
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Oña López, Juan José De; Mujalli, Randa Oqab; Calvo Poyo, Francisco Javier
Editorial
Elsevier
Materia
Bayesian networks
 
Injury severity
 
Traffic accidents
 
Classification
 
Date
2011
Referencia bibliográfica
de Oña, J.; Mujalli, R.O.; Calvo, F.J. Analysis of traffic accident injury severity on Spanish rural highways using Bayesian networks. Accident Analysis and Prevention 43(1): 402–411 (2011). [http://hdl.handle.net/10481/24401]
Sponsorship
TRYSE Research Group, Department of Civil Engineering, University of Granada, Spain
Abstract
Several different factors contribute to injury severity in traffic accidents, such as driver characteristics, highway characteristics, vehicle characteristics, accidents characteristics, and atmospheric factors. This paper shows the possibility of using Bayesian Networks (BNs) to classify traffic accidents according to their injury severity. BNs are capable of making predictions without the need for pre assumptions and are used to make graphic representations of complex systems with interrelated components. This paper presents an analysis of 1536 accidents on rural highways in Spain, where 18 variables representing the aforementioned contributing factors were used to build 3 different BNs that classified the severity of accidents into slightly injured and killed or severely injured. The variables that best identify the factors that are associated with a killed or seriously injured accident (accident type, driver age, lighting and number of injuries) were identified by inference.
Collections
  • TEP246 - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback