• français 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
Voir le document 
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Voir le document
  •   Accueil de DIGIBUG
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Grupo: Transporte y Seguridad (TEP246)
  • TEP246 - Artículos
  • Voir le document
JavaScript is disabled for your browser. Some features of this site may not work without it.

A method for simplifying the analysis of traffic accidents injury severity on two-lane highways using Bayesian networks

[PDF] 2011 JSR.pdf (892.2Ko)
Identificadores
URI: http://hdl.handle.net/10481/24399
ISSN: 0022-4375
Exportar
RISRefworksMendeleyBibtex
Estadísticas
Statistiques d'usage de visualisation
Metadatos
Afficher la notice complète
Auteur
Mujalli, Randa Oqab; Oña López, Juan José De
Editorial
Elsevier
Materia
Injury severity
 
Variable selection
 
Bayesian networks
 
Data mining
 
Classification
 
Date
2011
Referencia bibliográfica
Mujalli, R.O.; de Oña, J. A method for simplifying the analysis of traffic accidents injury severity on two-lane highways using Bayesian networks. Journal of Safety Research 42(5): 317–326 (2011). [http://hdl.handle.net/10481/24399]
Patrocinador
TRYSE Research Group, Department of Civil Engineering, University of Granada, Spain; Spanish Ministry of Science and Innovation (Research Project TRA2007-63564)
Résumé
Introduction: This study describes a method for reducing the number of variables frequently considered in model- ing the severity of traffic accidents. The method's efficiency is assessed by constructing Bayesian networks (BN). Method: It is based on a two stage selection process. Several variable selection algorithms, commonly used in data mining, are applied in order to select subsets of variables. BNs are built using the selected subsets and their performance is compared with the original BN (with all the variables) using five indicators. The BNs that im- prove the indicators’ values are further analyzed for identifying the most significant variables (accident type, age, atmospheric factors, gender, lighting, number of injured, and occupant involved). A new BN is built using these variables, where the results of the indicators indicate, in most of the cases, a statistically significant improvement with respect to the original BN. Conclusions: It is possible to reduce the number of variables used to model traffic accidents injury severity through BNs without reducing the performance of the model. Impact on Industry: The study provides the safety analysts a methodology that could be used to minimize the number of variables used in order to determine efficiently the injury severity of traffic accidents without reducing the performance of the model.
Colecciones
  • TEP246 - Artículos

Mon compte

Ouvrir une sessionS'inscrire

Parcourir

Tout DIGIBUGCommunautés et CollectionsPar date de publicationAuteursTitresSujetsFinanciaciónPerfil de autor UGRCette collectionPar date de publicationAuteursTitresSujetsFinanciación

Statistiques

Statistiques d'usage de visualisation

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contactez-nous | Faire parvenir un commentaire