Stability of Cylinders in E(κ, τ ) Homogeneous Spaces
Metadatos
Mostrar el registro completo del ítemEditorial
Springer Nature
Materia
E(κ, τ ) spaces Stability Plateau–Rayleigh instability
Fecha
2025-03-21Referencia bibliográfica
Bueno, A., López, R. Stability of Cylinders in Homogeneous Spaces. Mediterr. J. Math. 22, 59 (2025). [https://doi.org/10.1007/s00009-025-02829-y]
Patrocinador
Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature; MCIN/AEI "ERDF A way of making Europe" PID2021-124157NB-I00; CARM, Programa Regional de Fomento de la Investigacion, Fundacion Seneca-Agencia de Ciencia y Tecnologia Region de Murcia 21937/PI/22; CUD San Javier research project PI082024; MINECO/MICINN/FEDER PID2023-150727NB-I00; The "Maria de Maeztu" Excellence Unit IMAG - MCINN/AEI CEX2020-001105-MResumen
We extend the classical Plateau–Rayleigh instability criterion
in the E(κ, τ ) spaces.We prove the existence of a positive number L0 > 0
such that if a truncated circular cylinder of radius ρ in E(κ, τ) has length
L > L0, then it is unstable. This number L0 depends on κ, τ and ρ. The
value L0 is sharp under axially symmetric variations of the surface. We
also extend this result for the partitioning problem in E(κ, τ ).