• English 
    • español
    • English
    • français
  • FacebookPinterestTwitter
  • español
  • English
  • français
View Item 
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
  •   DIGIBUG Home
  • 1.-Investigación
  • Departamentos, Grupos de Investigación e Institutos
  • Departamento de Ciencias de la Computación e Inteligencia Artificial
  • DCCIA - Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Value-based potentials: Exploiting quantitative information regularity patterns in probabilistic graphical models

[PDF] main.pdf (454.4Kb)
Identificadores
URI: https://hdl.handle.net/10481/100001
DOI: https://doi.org/10.1002/int.22573
Exportar
RISRefworksMendeleyBibtex
Estadísticas
View Usage Statistics
Metadata
Show full item record
Author
Gómez Olmedo, Manuel; Cabañas de Paz, Rafael; Cano, Andrés; Moral, Serafín; Retamero Pascual, Ofelia P.
Editorial
Wiley
Materia
Probabilistic graphical models
 
Bayesian networks
 
Date
2021-07-26
Abstract
When dealing with complex models (i.e., models with many variables, a high degree of dependency between variables, or many states per variable), the efficient representation of quantitative information in probabilistic graphical models (PGMs) is a challenging task. To address this problem, this study introduces several new structures, aptly named value-based potentials (VBPs), which are based exclusively on the values. VBPs leverage repeated values to reduce memory requirements. In the present paper, they are compared with some common structures, like standard tables or unidimensional arrays, and probability trees (PT). Like VBPs, PTs are designed to reduce the memory space, but this is achieved only if value repetitions correspond to context-specific independence patterns (i.e., repeated values are related to consecutive indices or configurations). VBPs are devised to overcome this limitation. The goal of this study is to analyze the properties of VBPs. We provide a theoretical analysis of VBPs and use them to encode the quantitative information of a set of well-known Bayesian networks, measuring the access time to their content and the computational time required to perform some inference tasks.
Collections
  • DCCIA - Artículos

My Account

LoginRegister

Browse

All of DIGIBUGCommunities and CollectionsBy Issue DateAuthorsTitlesSubjectFinanciaciónAuthor profilesThis CollectionBy Issue DateAuthorsTitlesSubjectFinanciación

Statistics

View Usage Statistics

Servicios

Pasos para autoarchivoAyudaLicencias Creative CommonsSHERPA/RoMEODulcinea Biblioteca UniversitariaNos puedes encontrar a través deCondiciones legales

Contact Us | Send Feedback