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Abstract: The comparison of two paired binomial proportions is a topic of interest in statistics, with
important applications in medicine. There are different methods in the statistical literature to solve
this problem, and the McNemar test is the best known of all of them. The problem has been solved
from a conditioned perspective, only considering the discordant pairs, and from an unconditioned
perspective, considering all of the observed values. This manuscript reviews the existing methods
to solve the hypothesis test of equality for the two paired proportions and proposes new methods.
Monte Carlo simulation methods were carried out to study the asymptotic behaviour of the methods
studied, giving some general rules of application depending on the sample size. In general terms, the
Wald test, the likelihood-ratio test, and two tests based on association measures in 2 × 2 tables can
always be applied, whatever the sample size is, and if the sample size is large, then the McNemar test
without a continuity correction and the modified Wald test can also be applied. The results have been
applied to a real example on the diagnosis of coronary heart disease.
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1. Introduction

The comparison of two proportions is a topic of special interest in statistics [1], with
important applications in medicine and health sciences in general. Of special interest is
the case in which the two proportions are paired, as is the case in which, in a sample of
n individuals, a binary variable is observed before and after a certain treatment or when
the sensitivities (specificities) of two binary diagnostic tests are compared with respect to
the same gold standard [2,3]. This problem also frequently arises in clinical trials [4], such
as when assessing the effectiveness of a new drug or treatment. These situations give rise
to the analysis of a 2 × 2 table, in which the only value set by the researcher is the sample
size n. There are numerous statistical methods in the statistical literature to solve these
problems. Classically, the problem has been solved by conditioning in discordant pairs
and thus neglecting the frequencies of discordant pairs. This way of solving the problem
has given rise to different methods, and the McNemar test [5] is the best known of all of
them [6–8]. The problem can be solved with exact tests (conditioned and unconditioned)
and with approximate tests (conditioned and unconditioned). All test statistics of the
approximate methods are distributed approximately according to a chi-square distribution
with one degree of freedom.

In the statistical literature, there are numerous methods to solve the hypothesis test
to compare two paired proportions. May and Johnson [9], Park [10], and, more recently,
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Fagerland et al. [11–13] have compared different methods to solve this problem. However,
in these works, only some of the existing methods have been studied. This is one of the
main motivations for our study together with the proposal of new methods, comparing a
large number of different methods to solve the hypothesis testing to compare two paired
binomial proportions.

An alternative method to the hypothesis test, one directly related to it, consists of
comparing the two paired proportions using confidence intervals for the difference (or
ratio) of the two paired proportions. A review of more common confidence intervals can
be seen in Pradhan et al. [4] and Tan et al. [14]. In addition, new intervals are proposed
in Pradhan et al. [15], more recently in Fay et al. [16], and in Chan et al. [17]. A review
of different methods to solve the hypothesis test as well as confidence intervals for the
difference and the ratio of two paired proportions can be seen in Fagerland et al. [13].

Therefore, the purpose of this manuscript is to compare the asymptotic behaviour in
terms of type I error rates and powers of different methods to solve the hypothesis test to
compare two paired binomial proportions and to provide general rules of application for
the methods. The rest of the article is structured as follows. Section 2 describes 24 methods
to solve the hypothesis test for comparing two paired binomial proportions. Section 3
describes the criteria used to compare the asymptotic behaviour of the 24 methods. Section 4
carries out extensive Monte Carlo simulation experiments to study the type I error rates and
the powers of the methods. Section 5 presents general rules of application for the methods
to solve the problem posed. In Section 6, the results are applied to a real example on the
diagnosis of coronary heart disease, and Section 7 discusses the conclusions obtained.

2. Notation and Methods

In general terms and focusing on common problems in the field of medicine, let us
consider a binary random variable, with the categories of ‘success’ and ‘failure’, which is
observed in a random sample of n individuals before and after a treatment. This situation
gives rise to Table 1, where the only value set from the researcher is the sample size n. This
table also shows the theoretical probabilities of each cell. The data observed in this table,
n = (n11, n12, n21, n22)

T , were the product of a multinominal distribution with probability
vector p = (p11, p12, p21, p22)

T , verifying that ∑ pij = 1. Variance–covariance matrix of p
was as follows:

∑p̂ =
diag(p)− ppT

n
,

and the estimator of pij was p̂ij = nij/n.

Table 1. Observed frequencies and theoretical probabilities.

Observed Frequencies

After

Success Failure Total

Before
Success n11 n12 n1·
Failure n21 n22 n2·

Total n·1 n·2 n

Theoretical probabilities

After

Success Failure Total

Before
Success p11 p12 p1·
Failure p21 p22 p2·

Total p·1 p·2 1



Mathematics 2024, 12, 190 3 of 23

In this situation, the comparison of two paired binomial proportions consisted of
solving the hypothesis test:

H0 : p1· = p·1 vs H1 : p1· ̸= p·1, (1)

which was equivalent to solving the test:

H0 : p12 = p21 vs H1 : p12 ̸= p21. (2)

Estimators of p1· and p·1 were as follows:

p̂1· =
n11 + n12

n
=

n1·
n

and p̂·1 =
n11 + n21

n
=

n·1
n

.

The following describes 24 statistical methods to solve this hypothesis test. Of these
24 methods, two were exact, one was quasi-exact, and 21 were approximate (of which five
were new).

1. Conditional exact test (CET)

The probabilities p11 and p22 did not intervene in the hypothesis test (1) so that these
probabilities could be ignored, as frequencies n11 and n22 could, because they did not
influence the results of the hypothesis test (1). Conditioning was in the sum of discordant
frequencies, i.e., an exact test was obtained using the binomial distribution [13,18]. Con-
ditioning on n′ = n12 + n21, it was verified that p12 + p21 = 1, and therefore, n12 was the
product of a binomial distribution of parameters n′ and p12, i.e., n12 → Bin(n′, p12) . If
H0 : p12 = p21 was true, then p12 = p21 = 1/2, and the hypothesis test (1) was equivalent
to the test:

H0 : p12 = 1/2 vs H1 : p12 ̸= 1/2

The p-value could be calculated directly from the binomial distribution. If we assumed
that n12 ≥ n21, then the following was derived:

two-sided exact p-value = P(X ≥ n12 or X ≤ n21) = 2 × P(X ≥ n12),

where X → Bin(n′, 1/2) . Finally, the two-sided exact p-value for the comparison test of
the two paired binomial proportions was as follows:

two-sided exact p-value = 2 ×
Min(n12,n21)

∑
j=0

(
n′

j

)(
1
2

)n′

. (3)

Conditional exact test is a conservative test; that is, when H0 is true, the p-value is
typically less than α% of the time, where α is the nominal error level.

2. Conditional exact mid-p test (MidpT)

The conditional exact mid-p test [19] is a modification of the CET that consists of
subtracting the probability of the observed outcome n12 from (3), as in the following:

P(X = n12) =

(
n′

n12

)(
1
2

)n′

Then, the mid-p value to compare the two proportions is as follows:

mid-p value = two-sided exact p-value −
(

n′

n12

)(
1
2

)n′

.

Conditional exact mid-p test is a less conservative method than the CET.
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3. McNemar Test (MT)

The McNemar test [4,13,18] is the asymptotic version of the CET. Conditioning in
n′ = n12 + n21 and applying the central limit theorem, the test statistic for hypothesis test
(1) is as follows:

z =
p̂12 − p̂21√

Var( p̂12 − p̂21)
,

whose distribution is approximately a standard normal distribution and where the follow-
ing occurs:

Var( p̂12 − p̂21) =
p12 + p21 − (p12 − p21)

2

n′ ,

Since it is being conditioned in n′ = n12 + n21 (frequencies n11 and n22 are disregarded),
then p̂12 = n12/n′ and p̂21 = n21/n′. If H0 : p12 = p21 is true, then the following are
derived:

Var0( p̂12 − p̂21) =
p12 + p21

n′

and
V̂ar0( p̂12 − p̂21) =

n12 + n21

(n′)2 .

Substituting pij with p̂ij = nij/n′ and Var( p̂12 − p̂21) for V̂ar0( p̂12 − p̂21) in the ex-
pression of the test statistic z, the test statistic of the McNemar test (without continuity
correction) is as follows:

zMT =
n12 − n21√
n12 + n21

,

whose distribution is approximately (it is traditionally required that n12 + n21 > 10) a
standard normal. Very often, the test statistic is expressed in terms of the chi-square
distribution:

χ2
MT =

(n12 − n21)
2

n12 + n21
,

whose distribution is approximately one chi-square with a degree of freedom. MT is a
method that has good asymptotic behaviour in terms of type I error rate and power.

4. McNemar test with Yates continuity correction (MTYcc)

The McNemar test approximates the binomial distribution to the normal distribution.
In this situation, it is common to apply a continuity correction (cc), whose objective is
to improve the approximation to the normal distribution. Edwards [20] proposed the
following test statistic with Yates cc [21]:

zMTYcc =
( p̂12 − p̂21)− 1

n′√
V̂ar0( p̂12 − p̂21)

,

whose distribution is approximately a standard normal distribution. It is also common to
express this test statistic in terms of the chi-square distribution [13,18]:

χ2
MTEcc =

(|n12 − n21| − 1)2

n12 + n21
.

5. McNemar test with continuity correction (MTcc1)

Conditioning in n′ = n12 + n21, the random variable n12 − n21 jumps from 1 to 1, so a
cc is 1/2 (half the jump) [22]. Therefore, another test statistic of the McNemar test with cc is
as follows:

zMTcc1 =
( p̂12 − p̂21)− 1

2n′√
V̂ar0( p̂12 − p̂21)

=
(n12 − n21)− 1

2√
V̂ar0( p̂12 − p̂21)

,
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or what is the same:

χ2
MTcc1 =

(|n12 − n21| − 0.5)2

n12 + n21
.

This cc has been used by Chang et al. [17] to estimate the difference between two paired
binomial proportions using confidence intervals. These authors have also proposed other
continuity corrections: 0.125 and 0.25. We proposed applying these continuity corrections
to the McNemar test statistics, obtaining the following new test statistics (called MTcc2 and
MTcc3, respectively):

χ2
MTcc2 =

(|n12 − n21| − 0.25)2

n12 + n21
and χ2

MTcc3 =
(|n12 − n21| − 0.125)2

n12 + n21
.

6. Modified McNemar test (MMT)

Bennett and Underwood [23] proposed a modification of the McNemar test statistic
by adding 1/2 to the observed frequencies, with the aim of improving the approximation
to the chi-square distribution. Thus, the test statistic is as follows:

χ2
MMT =

(n12 − n21)
2

n12 + n21 + 1
.

7. Wald test (WT)

The hypothesis test (1) can be solved by applying the Wald method [24,25]. Since
p = (p11, p12, p21, p22)

T is the probability vector of a multinomial distribution, its variance-
covariance matrix is as follows:

∑p̂ =
diag(p)− pTp

n
.

The hypothesis test (2) is equivalent to checking the following:

H0 : ∆Tp = 0 vs H1 : ∆Tp ̸= 0,

where
∆ = (0, 1,−1, 0)T ,

It is easy to verify that the estimated variance of p̂12 − p̂21 is as follows:

V̂ar( p̂12 − p̂21) = V̂ar
(

∆Tp̂
)
= V̂ar( p̂12) + V̂ar( p̂21)− 2Ĉov( p̂12, p̂21) =

n12(n−n12)+n21(n−n21)+2n12n21
n3 ,

Applying the central limit theorem, the following is derived:

p̂12 − p̂21 − (p12 − p21)√
Var( p̂12 − p̂21)

→ N(0, 1).

By performing algebraic operations, it was obtained that the Wald test statistic for test
(2) was as follows:

χ2
WT =

n(n12 − n21)
2

4n12n21 + (n11 + n22)(n12 + n21)
,

whose distribution was approximately a chi-square distribution with a degree of freedom.



Mathematics 2024, 12, 190 6 of 23

8. Modified Wald test (MWT)

May and Johnson [9] proposed modifying the Wald test statistic by adding 1/2 to n12
and to n21. Thus, the modified Wald test statistic is as follows:

χ2
MWT =

(n12 − n21)
2

n12 + n21 + 1 − (n12−n21)
2

n

.

This method has good asymptotic behaviour and is recommended as one of the best
methods to solve the hypothesis test [9].

9. Likelihood-ratio test (LRT)

The hypothesis test (1) can be solved by applying the likelihood-ratio test [26]. The
likelihood function of the data is as follows:

L(p, n) = kpn11
11 pn12

12 pn21
21 pn22

22 ,

where k = n!/
2

∏
i,j=1

nij! . If H0 : p12 = p21 is true, then it is verified that the likelihood

function of the data is as follows:

L0(p, n) = kpn11
11 pn12+n21

12 pn22
22

and that the following is derived:

p̂12 = p̂21 =
n12 + n21

2n
=

n′

2n
.

Applying the likelihood-ratio test [25,26], the likelihood-ratio test statistic to compare
the two proportions was as follows:

χ2
LRT = −2 log


(

n′
2n

)n12+n21

(n12/n)n12(n21/n)n21

 = 2n12 log
(

2n12

n12 + n21

)
+ 2n21 log

(
2n21

n12 + n21

)
,

whose distribution was approximately one chi-square with a degree of freedom. Therefore,
the test statistic of the LRT method only contained the frequencies of the discordant pairs.

10. Unconditional exact test (UET)

The CET method condition on n′ = n12 + n21. Suissa and Shuster [27] have proposed,
from the McNemar test statistic, an exact test that uses all the observed frequencies and
therefore does not condition in n12 + n21. When the two proportions were compared, the
power function of the test was as follows:

P(p12, p21) = ∑
C

(
n

n12 n21 n − m

)
pn12

12 pn21
21 (1 − p12 − p21)

n−m,

where m = n12 + n21 and C = {(n12, m) : n12 ≥ h(m); n12 = 0, 1, . . . , m; m = 0, 1, . . . , n},
with h(m) =

(
zM

√
m + m

)
/2 and zM as the calculated value of the McNemar statistic. If

H0 : p12 = p21 was true, then the distribution of (n12, m, n − m) was a trinomial distribution
with parameters n and probability vector (δ/2, δ/2, 1 − δ)T , and the power function was
as follows:

P(δ) = ∑
C

(
n

n12 n21 n − m

)(
δ

2

)m
(1 − δ)n−m,
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where δ = p12 + p21 was the nuisance parameter. El nuisance parameter was eliminated by
maximizing this function over the range of δ. The function P(δ) was simplified as follows:

P(δ) =
n

∑
j=k

(
n
j

)
δj(1 − δ)n−jFj

(
j − ij − 1

)
,

where k = int
[
z2

m + 1
]
, ij = int[h(j)], int[.] was the integer function and Fj was the cumula-

tive binomial distribution function with parameters j and 1/2. Finally, the two-sided exact
p-value was calculated as follows:

two-sided exact p-value = 2 × sup
0<δ<1

{P(δ)}.

11. Unconditional McNemar test (UMT)

Lu [28] has proposed a test statistic for the McNemar test that does not condition on
n′ = n12 + n21. Hypothesis test (1) was equivalent to the following hypothesis test:

H0 :
p12

p12 + p21
=

p21

p12 + p21
vs H1 :

p12

p12 + p21
̸= p21

p12 + p21
.

If H0 : p12 = p21 was true, then n12 (or n21) was the product of a binomial distribution
with parameters n and δ = (p12 + p21)/2, that is to say, n12 → Bin(n, δ) . The mean and
variance of the estimators of this binomial distribution were as follows:

nδ̂ = (n12 + n21)/2 and nδ̂
(
1 − δ̂

)
=

(n12 + n21)(n + n11 + n22)

4n
,

respectively. Approximating the normal distribution and applying the central limit theorem,
the unconditional test statistic was as follows:

zUMT =
n12 − nδ̂√
nδ̂

(
1 − δ̂

) =
n12 − n21√

(n12+n21)(n+n11+n22)
n

,

or rather

χ2
UMT =

n(n12 − n21)
2

(n12 + n21)(n + n11 + n22)
,

whose distribution was approximately a chi-square distribution with one degree of freedom.
In order to apply this method, it was required that n12 + n21 ≥ 10, and its asymptotic
behaviour was very similar to that of the CET [28].

12. Unconditional likelihood-ratio test (ULRT)

Lu [29] also proposed a likelihood-ratio test statistic to compare two binomial propor-
tions that contain all frequencies. The likelihood-ratio test statistic is obtained in two phases:
(I) the likelihood-ratio test statistic is calculates when the four nij frequencies are combined
in two, n12 and n11 + n21 + n22; (II) the likelihood-ratio test statistic is calculated when the
four nij frequencies are combined in another two, n21 and n11 + n12 + n22. Corresponding
test statistics were as follows:

χ2
I = 2 ×

[
n12 log

(
2n12

n12 + n21

)
+ (n11 + n21 + n22) log

(
2(n11 + n21 + n22)

2n − n12 − n21

)]
and

χ2
I I = 2 ×

[
n21 log

(
2n21

n12 + n21

)
+ (n11 + n12 + n22) log

(
2(n11 + n12 + n22)

2n − n12 − n21

)]
.
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Finally, the likelihood-ratio test statistic was calculated as the mean of both likelihood-
ratio test statistics:

χ2
ULRT =

χ2
I+χ2

I I
2 = n12 log

(
2n12

n12+n21

)
+ n21 log

(
2n21

n12+n21

)
+

(n − n12) log
[

2(n−n12)
2n−n12−n21

]
+ (n − n21) log

[
2(n−n21)

2n−n12−n21

]
,

,

and its distribution was approximately a chi-square distribution with one degree of freedom.
The ULRT can be applied in most cases, although the test statistic does not fit well to the
chi-square distribution when the difference between n12 and n21 is large, especially when
n11 + n22 is also large, and in this situation, it was a better method than the LRT [29].

13. New revised version of the McNemar test (NMT)

Lu et al. [30] revised the unconditional McNemar test [28]. Under the hypothesis that
is no difference in the number of “success” and “failure” results between “before” and
“after”, the estimated probability of obtaining a “success” is as follows:

p̂ =
n12 + n21 + 2n11

2n
,

and the estimated probability of obtaining a “failure” is as follows:

q̂ = 1 − p̂ =
n12 + n21 + 2n22

2n
.

Frequencies n12 + n11 and n21 + n22 correspond to “success” and “failure” in “before”
measurements. The estimated mean is as follows:

µ̂ = np̂ =
n12 + n21 + 2n11

2
,

and the estimated standard deviation is as follows:

σ̂ =
√

np̂q̂ =
1
2

√
(n12 + n21 + 2n11)(n12 + n21 + 2n22)

2
.

Applying the central limit theorem, the statistic test was as follows:

zNMT =
n12 − n21√

(n12+n21+2n11)(n12+n21+2n22)
n

,

and its distribution was approximately a standard normal distribution when n12 + n21 +
2n11 ≥ 10 and n12 + n21 + 2n22 ≥ 10. Alternatively, the following was derived:

χ2
NMT =

n(n12 − n21)
2

(n12 + n21 + 2n11)(n12 + n21 + 2n22)
.

This method had an asymptotic behaviour that improved that of the UMT [30].

14. New revised version of the McNemar test with cc (NMTcc)

Lu et al. [30] revised the unconditional McNemar test and proposed the following
unconditional test statistic with cc:

χ2
NMTcc =

n(|n12 − n21| − 1)2

(n12 + n21 + 2n11)(n12 + n21 + 2n22)
.



Mathematics 2024, 12, 190 9 of 23

15. Haber test (HT)

Haber [31] has studied the use of continuity correction in hypothesis testing, particu-
larizing the results in 2 × 2 tables. Haber proposed a McNemar test statistic with a cc based
on the McNemar test statistics:

zHT = zMT −
√

n
2m

,

where zMT = |n12 − n21|/
√

n12 + n21 is the McNemar test statistic and m is the number of
different values z may attain. The number of different achievable values of zMT is very
close to 0.9(n + 1)2/4, and since the range of zMT values is

[
0,
√

n
]
, the cc based on the

average difference of the successive values gives rise to the test statistic:

χ2
HT =

[
|n12 − n21|√

n12 + n21
− 2

√
n

0.9(n + 1)2

]2

,

and its distribution is approximately a chi-square with one degree of freedom.

16. Irony et al. test (IT)

Irony et al. [32] have studied the comparison of two binomial proportions from
a Bayesian perspective. The Dirichlet distribution is the natural conjugate prior for
p = (p11, p12, p21, p22)

T . Therefore, the distribution for PI is a Dirichlet with parame-
ter a = (a11, a12, a21, a22)

T , and its posterior distribution is also Dirichlet with parameter
A = (A11, A12, A21, A22)

T , where Aij = aij + nij. The objective is to solve the hypothe-
sis test:

Ho : δ = 0 vs Ho : δ ̸= 0,

where δ = p12 − p21. This hypothesis test is equivalent to the following:

Ho : θ =
1
2

vs Ho : θ ̸= 1
2

,

where θ = p12/(p12 + p21). Therefore, the only parameters of interest are p12 and p21, and
therefore, only the trinomial data (n12, n21, n11 + n22) are considered. Likelihood function
is written as a product of two factors: one depending only on the parameter of interest θ
and the other depending only on the nuisance parameter η. Distribution of θ is as follows:

Beta(A12, A21),

and distribution of η is as follows:

Beta(A12 + A21, A11 + A22).

Parameters θ and η are independent. An interval for δ is constructed by generating a
large number of observations from the posterior distribution of (p12, p21, 1 − η), that is, a
Dirichlet distribution with parameter (A12, A21, A11 + A22). Irony et al. [32] have shown
that posterior mean of δ is as follows:

A12 + A21

A
,

and posterior variance of δ is as follows:

4A12 A21 + (A12 + A21)(A11 + A22)

(A + 1)A2 .
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A confidence interval for δ is as follows:

δ̂∗ ± q

√
η̂∗ − δ̂∗2

n
± 1

n
,

where

δ̂∗ =
δ̂

1 + q2

n

, δ̂ =
n12 − n21

n
, η̂∗ =

η̂

1 + q2

n

, η̂ =
n12 + n21

n
,

and q is the 100(1 − α/2)% quantile of the standard normal distribution. From the previous
equations, test statistic for the hypothesis test (1) was as follows:

χ2
IT =


(n12−n21−1)2

n12+n21
, if n12 > n21

(n12−n21+1)2

n12+n21
, if n12 < n21

0 , if n12 = n21

,

whose distribution was approximately a chi-square distribution with one degree of freedom.

17. RR test (RRT)

The hypothesis test (1) was equivalent to the hypothesis test:

H0 : RR = 1 vs H1 : RR ̸= 1, (4)

where
RR =

p11 + p12

p11 + p21
=

p1·
p·1

.

Lui [33] solved this hypothesis test by applying weighted least squares. Estimator of
RR is as follows:

R̂R =
n1·
n·1

,

and applying the delta method the estimated variance of R̂R is as follows:

V̂ar
[
log

(
R̂R

)]
=

(
∂RR
∂p

)
p=p̂

ˆ∑p̂

(
∂RR
∂p

)T

p=p̂
=

2(1 − p̂∗)
np̂∗

−
2
[

p̂11 p̂22 − ( p̂∗∗)2
]

n( p̂∗)2 ,

where
ˆ∑p̂ =

diag(p̂)− p̂p̂T

n
, p̂∗ =

n1· + n·1
2n

, and p̂∗∗ =
n12 + n21

2n
.

Applying the central limit theorem, the test statistic for hypothesis test (4) was as fol-
lows:

zRRT =
log

(
R̂R

)
√

V̂ar
[
log

(
R̂R

)] →
n→∞

N(0, 1),

or equivalently

χ2
RRT =

[
log

(
R̂R

)]2

V̂ar
[
log

(
R̂R

)] ,

whose distribution was approximately a chi-square distribution with one degree of freedom.

18. OD test (ODT)

The hypothesis test (1) was also equivalent to the following:

H0 : OD = 1 vs H1 : OD ̸= 1, (5)
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where
OD =

p12

p21
,

Lui [33] solved this hypothesis test by applying the same method as the one used in
the RR test. Following an analogous procedure, the test statistic for the hypothesis test (5)
is as follows:

χ2
ODT =

[
log

(
ÔD

)]2

V̂ar
[
log

(
ÔD

)] ,

and where
ÔD =

n12

n21
and V̂ar

[
log

(
ÔD

)]
=

1
np̂∗

.

The distribution of the test statistic χ2
ODT is the same as the one in the previous case.

19. ODM test (ODMT)

The hypothesis test (1) was also the same as the following:

H0 : ODM = 1 vs H1 : ODM ̸= 1,

where

ODM =
(p11 + p12)(p21 + p22)

(p11 + p21)(p12 + p22)
=

p1·p2·
p·1 p·2

,

Applying the same method as in the two previous cases, Lui [33] proposed the follow-
ing test statistic:

χ2
ODMT =

[
log

(
ÔDM

)]2

V̂ar
[
log

(
ÔDM

)] ,

where

ÔDM =
n1·n2·
n·1n·2

and V̂ar
[
log

(
ÔDM

)]
=

2
np̂∗(1 − p̂∗)

−
2
[

p̂11 p̂22 − ( p̂∗∗)2
]

n( p̂∗)2(1 − p̂∗)2 .

The distribution of test statistic χ2
ODMT was the same as in the previous cases.

20. RR, OD, and ODM test with cc (RRTcc, ODTcc, and ODMTcc)

The previous three methods can also be obtained by adding a cc. We proposed to add
1/2 to each one of the observed frequencies, i.e., in the following:

n′
ij = nij + 1/2.

Thus, the expressions of test statistics χ2
RRT , χ2

ODT , and χ2
ODMT were replaced by p̂ij,

p̂∗, and p̂∗∗ as follows:

p̂′ij =
n′

ij

n′ , p̂∗′ =
n′

1· + n′
·1

2n′ , and p̂∗∗′ =
n′

12 + n′
21

2n′ ,

respectively. In this way, new test statistics χ2
RRTcc, χ2

ODTcc, and χ2
ODMTcc were obtained,

and their distributions were the same as in previous cases.

3. Criteria for Comparing Methods

The comparison of the asymptotic behaviour of the methods presented in the previous
section was made by comparing their type I error rates and their powers, taking as the
nominal error level α = 5%. Based on the type I error rates and the powers, the criteria in
order to choose the methods with best asymptotic behaviour were as follows:
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1. The type I error rate fluctuates around α = 5% without being much higher than this
value, a situation that has been considered when the type I error rate is <7% .

2. The power is higher as long as the type I error rate does not exceed α = 5%. “Step 1”
of this method to choose the method with the best asymptotic behaviour establishes
that the type I error rate must be lower than 7%. Let ∆α = α − α∗, where α = 5%
and α∗ are the type I error rates of the method. Related to a test statistic, if there is a
confidence interval (CI), then ∆α = γ∗ − γ, where γ = 1 − α = 0.95 is the nominal
confidence of the CI and γ∗ is the coverage probability of the CI calculated. In this
method, to choose test statistics, a test statistic is too liberal if α∗ ≥ 7% (∆α ≤ −2), or
what amounts to the same if γ∗ ≤ 93%, in which case it is said that the CI fails [34–36].
If a CI fails, then the type I error rate of the corresponding hypothesis test is ≥ 7%, and
therefore, the hypothesis test is very liberal and leads to too many false significances.

4. Simulation Experiments

Extensive Monte Carlo simulation experiments were carried out in order to study
the asymptotic behaviour, measured in terms of type I error rates and powers, of the
test statistics presented in Section 2. These experiments, made with the R program [37],
consisted of generating N = 50, 000 random samples of multinomial distribution with
probabilities given in Table 1 of n = {20, 30, 50, 100, 200} sizes. Following the idea of Fager-
land et al. [12], probabilities (p11, p12, p21, p22) have been re-parameterized as (p12, p21, θ),
where θ = p11 p22/(p11 p22) is the odds ratio. In order to study type I error rates, it was
considered that p12 = p21, and to study the powers, it was considered that p12 ̸= p21.
Values {0.1, 0.2, . . . , 0.8, 0.9} were taken as values for p1· and p·1, and values {1, 2, 5, 10}
were considered for θ. Therefore, a wide range of values were considered to reveal the
asymptotic behaviour of each test statistic. In order to calculate type I error rates and
the powers, α = 5% was set. Initial simulation experiments were carried out, generating
N = {10, 000; 20, 000; 50, 000; 100, 000} random samples for several scenarios, obtaining the
outcome that the results for N = {50, 000; 100, 000} were stable so that, finally, N = 50, 000
was considered as a way to save computing time.

4.1. Type I Error Rates

Tables 2–5 show some of the results obtained for the type I error rates of the test statistics
in different scenarios. Each scenario also shows basic descriptive statistics of n12 + n21 (mean
and standard deviation). By analyzing the result, the following conclusions can be drawn:

• Both the exact test (CET and UET) and the quasi-exact test MidpT) are conservative
methods, and their type I error rates never exceed the nominal error level α = 5%.

• All of the McNemar test statistics (MT, MTYcc, MTcc1, MTcc2, MTcc3, and MMT)
are conservative when, in general terms, E(n12 + n21) is not high. The value of
E(n12 + n21) decreases as the value of the odds ratio θ increases, so if θ = 1, all four
methods are conservative when E(n12 + n21) ≤ 21 (rounding up to the nearest whole
value), and when θ = 10, all four methods are conservative when E(n12 + n21) ≤ 12.
In each scenario, in general terms, the type I error rates of these methods fluctuate
around α = 5% when E(n12 + n21) is higher than each one of the previous values.
Likewise, continuity corrections do not improve the asymptotic behaviour of the type
I error rates, especially when E(n12 + n21) is high (> 20). When E(n12 + n21) is small
(≤ 10) or moderate (> 10 and ≤ 20), continuity corrections do not have a clear effect
on the type I error rate, as sometimes it improves and sometimes it gets worse.

• MidpT, MT, and UET have practically the same type I error rates when n ≤ 30.
• Test statistics ODT and ODTcc are methods that lead to many false significances since

they have type I error rates that greatly exceed α = 5%. Therefore, both methods
should not be used.

• The other approximate methods (which are unconditioned methods) are conservative
when n ≤ 50, and, in very general terms, their type I error rates fluctuate around α = 5%
(without being too much higher) when n ≥ 100. Some of these methods (WT, LRT, RRT,
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and ODMT) have type I error rates that fluctuate around α = 5% (without being too
much higher) when n = 50. Regarding the continuity corrections of the RRT and ODMT
methods, they do not improve the asymptotic behaviour of their type I error rates.

Table 2. Type I error rates (in %) for θ = 1 and different scenarios.

n = 20 n = 30 n = 50 n = 100 n = 200

Method Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

CET 0.02 1.86 0.01 0.29 1.67 2.41 1.45 2.87 3.00 2.89 3.18 3.58 3.34 3.80 3.71

MidpT 0.16 3.64 0.12 0.93 3.44 4.18 3.08 4.61 4.53 4.62 4.48 4.87 4.70 4.98 4.71

MT 0.16 3.64 0.12 0.93 3.44 4.18 3.08 4.82 5.28 5.05 5.08 4.91 4.99 5.04 4.95

UET 0.16 3.62 0.12 0.93 3.44 4.18 3.08 4.61 4.53 4.13 4.27 4.38 4.70 4.82 4.63

MTYcc 0.02 1.86 0.01 0.29 1.65 2.21 1.43 2.46 2.76 2.52 3.17 3.42 3.27 3.64 3.67

MTcc1 0.16 3.64 0.12 0.93 4.60 0.87 3.08 4.52 3.08 4.62 5.00 4.55 4.93 4.95 5.07

MTcc2 0.16 3.64 0.12 0.93 4.67 0.87 3.08 4.80 3.08 4.98 5.00 4.94 4.93 5.05 5.08

MTcc3 0.16 3.64 0.12 0.93 4.67 0.87 3.08 4.80 3.08 4.98 5.00 4.94 4.93 5.05 5.08

MMT 0.16 3.62 0.12 0.93 3.40 3.83 3.04 3.98 4.30 4.13 4.46 4.59 4.59 4.84 4.63

WT 0.72 6.62 0.66 2.72 6.38 6.39 5.92 5.68 5.42 5.39 5.24 5.38 5.27 5.19 5.01

MWT 0.16 5.69 0.13 0.93 3.89 5.17 3.08 4.82 5.28 4.69 5.05 4.91 4.93 5.04 4.95

LRT 0.72 6.49 0.66 2.72 6.38 6.25 5.92 5.68 5.35 5.49 5.23 5.12 5.27 5.15 4.95

UMT 0.00 0.87 0.00 0.01 0.42 1.08 0.26 0.88 1.30 0.70 1.07 1.33 0.70 1.07 1.28

ULRT 0.00 0.87 0.00 0.01 0.42 1.08 0.26 0.88 1.30 0.70 1.07 1.33 0.70 1.07 1.28

NMT 0.00 0.53 0.00 0.01 0.30 0.51 0.19 0.49 0.53 0.54 0.54 0.56 0.52 0.55 0.53

NMTcc 0.00 0.18 0.00 0.00 0.07 0.19 0.05 0.19 0.26 0.20 0.29 0.34 0.32 0.37 0.38

HT 0.16 3.64 0.12 0.93 3.44 4.18 3.08 4.61 4.54 4.98 4.88 4.91 4.99 5.04 4.95

IT 0.02 1.86 0.01 0.29 1.65 2.21 1.43 2.46 2.76 2.52 3.17 3.42 3.27 3.64 3.67

RRT 2.53 4.83 0.12 5.38 6.61 6.13 6.88 6.24 5.49 6.34 5.49 5.37 5.67 5.35 5.01

ODT 9.77 18.43 9.83 15.94 18.50 18.47 18.49 17.72 16.96 17.44 17.43 17.52 17.49 16.78 17.00

ODMT 0.72 5.39 0.66 2.72 6.28 5.83 5.92 5.92 5.37 6.21 5.33 5.27 5.60 5.26 4.99

RRTcc 0.16 3.15 0.01 0.93 3.88 0.29 3.31 4.38 3.04 5.33 4.62 3.98 5.17 4.85 4.73

ODTcc 2.96 13.91 2.94 9.30 15.01 9.38 15.88 15.60 15.92 16.61 16.43 16.64 16.50 16.37 16.85

ODMTcc 0.16 3.16 0.12 0.93 3.89 0.87 3.31 4.38 3.28 5.15 4.62 5.07 5.10 4.85 5.26

E(n12 + n21) 4.20 10.02 4.19 5.72 9.64 12.61 9.08 16.01 21.01 18.02 32.02 42.01 36.02 63.98 83.97

SD(n12 + n21) 1.51 2.22 1.50 1.97 2.53 2.70 2.68 3.30 3.49 3.85 4.67 4.93 5.43 6.59 6.97

Scen. 1: p1· = p·1 = 10%. Scen. 2: p1· = p·1 = 50%. Scen. 3: p1· = p·1 = 90%.

Table 3. Type I error rates (in %) for θ = 2 and different scenarios.

n = 20 n = 30 n = 50 n = 100 n = 200

Method Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

CET 0.01 0.31 0.72 0.21 1.27 1.98 1.22 2.58 2.97 2.83 3.04 3.35 3.20 3.70 3.76

MidpT 0.10 1.02 2.09 0.73 2.86 3.90 2.76 4.44 4.66 4.57 4.53 4.73 4.63 4.91 4.87

MT 0.10 1.02 2.09 0.73 2.86 3.90 2.76 4.51 5.08 4.84 5.27 5.00 5.09 4.91 5.01

UET 0.10 1.02 2.09 0.73 2.86 3.90 2.76 4.44 4.66 3.98 4.44 4.35 4.62 4.75 4.77

MTYcc 0.01 0.31 0.72 0.21 1.27 1.94 1.22 2.29 2.53 2.46 3.03 3.29 3.17 3.65 3.63

MTcc1 0.10 2.88 0.07 0.73 4.24 0.62 2.76 4.50 2.68 4.57 4.91 4.72 4.88 5.01 5.20

MTcc2 0.10 2.88 0.07 0.73 4.25 0.62 2.76 5.08 2.68 4.82 4.91 4.95 4.90 5.01 5.23

MTcc3 0.10 2.88 0.07 0.73 4.25 0.62 2.76 5.08 2.68 4.82 4.91 4.95 4.90 5.01 5.23

MMT 0.10 1.02 2.09 0.73 2.85 3.78 2.73 3.90 4.15 3.98 4.52 4.64 4.58 4.84 4.77

WT 0.53 3.01 4.83 2.19 5.77 6.55 5.59 6.02 5.48 5.38 5.31 5.27 5.25 5.22 5.04

MWT 0.11 1.23 2.78 0.73 3.10 4.61 2.76 4.51 5.08 4.59 5.16 5.00 4.88 4.91 5.01

LRT 0.53 3.01 4.83 2.19 5.77 6.51 5.59 6.02 5.47 5.57 5.31 5.24 5.25 5.08 5.03

UMT 0.01 0.09 0.25 0.01 0.27 0.65 0.18 0.72 1.07 0.65 0.96 1.15 0.71 0.95 1.12
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Table 3. Cont.

n = 20 n = 30 n = 50 n = 100 n = 200

Method Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

ULRT 0.01 0.09 0.25 0.01 0.27 0.65 0.18 0.72 1.07 0.65 0.96 1.15 0.71 0.95 1.12

NMT 0.00 0.05 0.11 0.01 0.14 0.23 0.10 0.28 0.26 0.37 0.32 0.27 0.38 0.33 0.26

NMTcc 0.00 0.01 0.03 0.00 0.03 0.08 0.02 0.09 0.11 0.11 0.15 0.14 0.19 0.20 0.16

HT 0.10 1.02 2.09 0.73 2.86 3.90 2.76 4.44 4.66 4.82 4.90 4.94 5.09 4.91 5.01

IT 0.01 0.31 0.72 0.21 1.27 1.94 1.22 2.29 2.53 2.46 3.03 3.29 3.17 3.65 3.63

RRT 1.95 4.11 4.82 4.21 5.95 5.81 6.42 6.13 5.49 6.24 5.38 5.27 5.58 5.24 5.03

ODT 8.58 16.63 18.42 14.85 18.63 18.44 18.45 18.13 17.45 17.60 17.24 17.64 17.53 17.01 17.09

ODMT 0.53 2.98 4.37 2.19 5.49 5.40 5.55 5.81 5.41 6.08 5.32 5.25 5.48 5.14 5.03

RRTcc 0.10 2.18 0.01 0.73 3.77 0.19 2.88 4.23 2.66 5.08 4.59 4.09 5.11 4.67 4.88

ODTcc 2.47 12.33 3.00 7.83 15.55 8.06 15.52 16.26 15.48 16.38 16.45 16.52 16.61 15.57 16.95

ODMTcc 0.10 2.19 0.07 0.73 3.88 0.62 2.88 4.23 2.78 4.86 4.59 4.99 5.06 4.67 5.37

E(n12 + n21) 3.99 5.86 7.25 5.36 8.49 10.72 8.41 14.04 17.83 16.63 28.08 35.66 33.26 56.13 71.25

SD(n12 + n21) 1.44 1.89 2.08 1.88 2.42 2.61 2.58 3.17 3.38 3.73 4.49 4.79 5.27 6.35 6.80

Scen. 1: p1· = p·1 = 10%. Scen. 2: p1· = p·1 = 50%. Scen. 3: p1· = p·1 = 90%.

Table 4. Type I error rates (in %) for θ = 5 and different scenarios.

n = 20 n = 30 n = 50 n = 100 n = 200

Method Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

CET 0.01 0.08 0.26 0.09 0.61 1.18 0.74 2.04 2.55 2.58 2.99 3.00 3.05 3.57 3.69

MidpT 0.04 0.43 0.88 0.38 1.72 2.78 2.02 3.93 4.44 4.48 4.46 4.45 4.54 4.94 4.91

MT 0.04 0.43 0.88 0.38 1.72 2.78 2.02 3.93 4.51 4.56 5.28 5.28 5.26 4.96 4.92

UET 0.04 0.43 0.88 0.38 1.72 2.78 2.02 3.93 4.44 3.99 4.29 4.38 4.54 4.82 4.71

MTYcc 0.01 0.08 0.26 0.09 0.61 1.17 0.74 1.98 2.28 2.29 2.81 2.98 3.03 3.40 3.63

MTcc1 0.04 1.40 0.03 0.38 3.27 0.35 2.02 4.58 1.86 4.48 4.89 4.35 4.77 4.95 4.94

MTcc2 0.04 1.40 0.03 0.38 3.27 0.35 2.02 4.72 1.86 4.56 4.94 4.42 4.94 4.95 5.08

MTcc3 0.04 1.40 0.03 0.38 3.27 0.35 2.02 4.72 1.86 4.56 4.94 4.42 4.94 4.95 5.08

MMT 0.04 0.43 0.88 0.38 1.72 2.77 2.01 3.73 3.93 3.99 4.29 4.43 4.52 4.73 4.83

WT 0.31 1.52 2.71 1.40 4.22 5.56 4.62 6.42 6.23 5.32 5.34 5.30 5.30 5.26 5.31

MWT 0.04 0.47 1.06 0.38 1.76 2.96 2.02 3.93 4.51 4.48 4.78 5.10 4.76 4.96 4.92

LRT 0.31 1.52 2.71 1.40 4.22 5.56 4.62 6.42 6.23 6.01 5.34 5.30 5.30 5.16 5.06

UMT 0.01 0.01 0.07 0.00 0.07 0.24 0.09 0.46 0.70 0.54 0.84 0.95 0.63 0.79 0.94

ULRT 0.01 0.01 0.07 0.00 0.07 0.24 0.09 0.46 0.70 0.54 0.84 0.95 0.63 0.79 0.94

NMT 0.00 0.00 0.02 0.00 0.04 0.04 0.03 0.07 0.06 0.15 0.10 0.07 0.15 0.08 0.06

NMTcc 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.03 0.03 0.06 0.05 0.04 0.08 0.06 0.05

HT 0.04 0.43 0.88 0.38 1.72 2.78 2.02 3.93 4.44 4.56 5.03 4.88 5.26 4.96 4.92

IT 0.01 0.08 0.26 0.09 0.61 1.17 0.74 1.98 2.28 2.29 2.81 2.98 3.03 3.40 3.63

RRT 1.02 2.05 2.57 2.58 4.16 4.09 5.21 5.54 5.44 6.12 5.34 5.30 5.36 5.17 5.05

ODT 6.36 13.18 16.36 12.35 17.83 18.61 17.69 18.38 18.23 18.07 17.07 17.23 17.23 17.44 17.11

ODMT 0.31 1.46 2.17 1.39 3.57 3.57 4.49 5.14 5.35 6.00 5.32 5.30 5.33 5.08 5.00

RRTcc 0.04 0.83 0.00 0.38 2.71 0.09 2.04 3.93 1.86 4.72 4.50 3.80 4.96 4.73 4.59

ODTcc 1.51 9.05 1.34 5.39 16.40 5.47 13.45 16.20 13.71 16.14 16.96 15.91 16.82 16.25 17.20

ODMTcc 0.04 0.82 0.03 0.38 3.09 0.35 2.04 3.93 1.90 4.55 4.51 4.41 4.89 4.73 5.05

E(n12 + n21) 3.61 4.86 5.71 4.72 6.83 8.25 7.21 11.12 13.62 14.07 22.19 27.22 28.12 44.36 54.41

SD(n12 + n21) 1.31 1.69 1.86 1.72 2.18 2.38 2.37 2.92 3.14 3.48 4.16 4.45 4.92 5.87 6.31

Scen. 1: p1· = p·1 = 10%. Scen. 2: p1· = p·1 = 50%. Scen. 3: p1· = p·1 = 90%.
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Table 5. Type I error rates (in %) for θ = 10 and different scenarios.

n = 20 n = 30 n = 50 n = 100 n = 200

Method Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

CET 0.01 0.02 0.07 0.04 0.29 0.52 0.44 1.44 1.98 2.17 2.87 2.99 2.96 3.35 3.55

MidpT 0.01 0.15 0.35 0.19 0.90 1.56 1.26 3.00 3.85 4.05 4.68 4.56 4.50 4.68 4.88

MT 0.01 0.15 0.35 0.19 0.90 1.56 1.26 3.00 3.85 4.07 5.10 5.33 5.31 4.98 4.91

UET 0.01 0.15 0.35 0.19 0.90 1.56 1.26 3.00 3.85 3.76 4.19 4.30 4.50 4.67 4.79

MTYcc 0.01 0.02 0.07 0.04 0.29 0.52 0.44 1.42 1.93 2.04 2.49 2.74 2.86 3.28 3.40

MTcc1 0.01 0.55 0.01 0.19 2.11 0.13 1.26 4.17 1.13 4.05 4.57 3.98 4.61 4.96 4.69

MTcc2 0.01 0.55 0.01 0.19 2.11 0.13 1.26 4.18 1.13 4.07 4.96 3.99 5.00 4.96 5.09

MTcc3 0.01 0.55 0.01 0.19 2.11 0.13 1.26 4.18 1.13 4.07 4.96 3.99 5.00 4.96 5.09

MMT 0.01 0.15 0.35 0.19 0.90 1.56 1.26 2.97 3.68 3.76 4.19 4.30 4.37 4.60 4.69

WT 0.13 0.74 1.37 0.79 2.60 3.96 3.42 5.82 6.45 4.83 5.49 5.41 5.34 5.22 5.20

MWT 0.01 0.16 0.38 0.19 0.91 1.59 1.26 3.00 3.85 4.05 4.74 4.82 4.48 4.89 4.91

LRT 0.13 0.74 1.37 0.79 2.60 3.96 3.42 5.82 6.45 6.21 5.61 5.42 5.34 5.22 5.14

UMT 0.00 0.01 0.01 0.00 0.01 0.06 0.04 0.22 0.41 0.40 0.68 0.79 0.56 0.72 0.81

ULRT 0.00 0.01 0.01 0.00 0.01 0.06 0.04 0.22 0.41 0.40 0.68 0.79 0.56 0.72 0.81

NMT 0.00 0.00 0.02 0.00 0.01 0.01 0.02 0.03 0.02 0.06 0.04 0.03 0.06 0.03 0.01

NMTcc 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.02 0.04 0.02 0.00

HT 0.01 0.15 0.35 0.19 0.90 1.56 1.26 3.00 3.85 4.07 5.04 5.11 5.31 4.98 4.91

IT 0.01 0.02 0.07 0.04 0.29 0.52 0.44 1.42 1.93 2.04 2.49 2.74 2.86 3.28 3.40

RRT 0.46 0.99 1.23 1.48 2.39 2.33 3.78 4.11 4.53 5.68 5.42 5.33 5.36 5.14 4.92

ODT 4.52 9.56 12.62 9.57 15.69 17.51 16.66 18.49 18.42 18.24 17.51 17.19 17.04 17.61 17.68

ODMT 0.13 0.68 0.95 0.78 1.97 1.98 3.11 3.74 4.42 5.58 5.33 5.33 5.34 5.04 4.91

RRTcc 0.01 0.30 0.00 0.19 1.52 0.02 1.27 3.86 1.13 4.13 4.38 3.71 4.64 4.59 4.47

ODTcc 0.82 5.75 0.78 3.4 13.98 3.35 10.83 15.99 10.70 16.01 17.28 15.86 16.95 16.53 17.47

ODMTcc 0.01 0.30 0.01 0.19 1.93 0.13 1.27 3.86 1.13 4.04 4.38 3.97 4.59 4.61 4.68

E(n12 + n21) 3.30 4.16 4.73 4.19 5.66 6.62 6.17 8.97 10.74 11.80 17.79 21.41 23.55 35.57 42.79

SD(n12 + n21) 1.18 1.50 1.66 1.55 1.95 2.14 2.15 2.66 2.88 3.21 3.82 4.10 4.65 5.41 5.82

Scen. 1: p1· = p·1 = 10%. Scen. 2: p1· = p·1 = 50%. Scen. 3: p1· = p·1 = 90%.

4.2. Powers

Tables 6–9 show some of the results obtained for the power of the test statistics in
different scenarios. These tables do not show the results for the test statistics ODT and
ODTcc since their type I error rates are very clearly higher than α = 5%. For each scenario
we can also see the basic descriptive statistic of n12 + n21. From the analysis of the results,
the following conclusions are obtained:

• UET and MidpT have very similar powers, and both are a little more powerful than
CET, especially when the sample size is small (n = {20, 30, 50}).

• The classic McNemar test statistic without cc (MT) has the same power as the three
McNemar test statistics with cc (MTcc1, MTcc2, and MTcc3), and all of them are more
powerful than the McNemar test statistic with Yates cc (MTYcc).

• Methods MT, MTcc1, MTcc2, and MTcc3 have the same power as UET and as MidpT
when n ≤ 30.

• Regarding the approximate tests, in general terms, the WT, LRT, RRT, and ODMT
methods have more power than the other approximate tests, especially when n ≤ 50.
When n ≥ 100, if the difference between p1· and p·1 is small (for example, p1· − p·1 =
10%), then the WT, LRT, RRT, and ODMT methods have more power than the rest of
the approximate methods; if the difference between p1· and p·1 is greater (for example,
p1· − p·1 ≥ 40%), then all of the approximate methods have very similar powers. The
continuity corrections in the RRT and ODMT methods do not improve their powers.
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Table 6. Powers (in %) for p1· = 0.10, p·1 = 0.20, and θ = 1.

Method n = 20 n = 30 n = 50 n = 100 n = 200

CET 0.89 5.49 18.58 42.45 77.04

MidpT 2.63 10.38 25.74 48.94 80.68

MT 2.63 10.38 25.83 52.02 80.68

UET 2.63 10.38 25.74 48.71 80.15

MTYcc 0.89 5.49 17.59 42.27 76.62

MTcc1 2.63 10.38 25.74 49.61 80.68

MTcc2 2.63 10.38 25.83 50.47 80.68

MTcc3 2.63 10.38 25.83 50.47 80.68

MMT 2.63 10.36 24.12 48.81 80.37

WT 6.85 17.79 30.93 52.08 81.42

MWT 3.04 10.86 25.83 51.16 80.68

LRT 6.85 17.78 30.93 52.08 80.92

UMT 0.22 1.40 8.22 26.72 57.77

ULRT 0.22 1.40 8.22 26.72 57.77

NMT 0.19 1.24 6.16 21.50 51.22

NMTcc 0.05 0.36 3.13 14.74 45.96

HT 2.63 10.38 25.74 50.47 80.68

IT 0.89 5.49 17.59 42.27 76.62

RRT 11.43 20.05 31.65 53.80 81.73

ODMT 6.85 17.77 31.38 52.89 81.72

RRTcc 2.63 10.66 26.81 51.66 80.78

ODMTcc 2.63 10.38 26.76 51.18 80.70

E(n12 + n21) 5.57 7.99 13.06 26.01 51.92

SD(n12 + n21) 1.84 2.34 3.08 4.39 6.19

Table 7. Powers (in %) for p1· = 0.20, p·1 = 0.80, and θ = 2.

Method n = 20 n = 30 n = 50 n = 100 n = 200

CET 93.70 99.81 100 100 100

MidpT 96.72 99.92 100 100 100

MT 96.72 99.92 100 100 100

UET 96.66 99.92 100 100 100

MTYcc 93.67 99.74 100 100 100

MTcc1 96.72 99.92 100 100 100

MTcc2 96.72 99.92 100 100 100

MTcc3 96.72 99.92 100 100 100

MMT 96.66 99.89 100 100 100

WT 98.46 99.95 100 100 100

MWT 98.15 99.94 100 100 100

LRT 98.40 99.94 100 100 100
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Table 7. Cont.

Method n = 20 n = 30 n = 50 n = 100 n = 200

UMT 88.88 99.48 100 100 100

ULRT 88.88 99.48 100 100 100

NMT 84.18 98.56 100 100 100

NMTcc 71.75 96.96 100 100 100

HT 96.72 99.92 100 100 100

IT 93.67 99.74 100 100 100

RRT 97.60 99.94 100 100 100

ODMT 97.94 99.94 100 100 100

RRTcc 96.20 99.89 100 100 100

ODMTcc 96.20 99.89 100 100 100

E(n12 + n21) 13.26 19.72 32.64 65.00 129.90

SD(n12 + n21) 2.09 2.57 3.35 4.76 6.74

Table 8. Powers (in %) for p1· = 0.10, p·1 = 0.50, and θ = 5.

Method n = 20 n = 30 n = 50 n = 100 n = 200

CET 53.17 91.78 99.87 100 100

MidpT 68.95 95.66 99.92 100 100

MT 68.95 95.66 99.92 100 100

UET 68.95 95.66 99.92 100 100

MTYcc 53.17 91.73 99.83 100 100

MTcc1 68.95 95.66 99.92 100 100

MTcc2 68.95 95.66 99.92 100 100

MTcc3 68.95 95.66 99.92 100 100

MMT 68.95 95.56 99.91 100 100

WT 82.00 97.80 99.94 100 100

MWT 72.05 96.13 99.92 100 100

LRT 82.00 97.79 99.94 100 100

UMT 36.37 80.43 99.50 100 100

ULRT 36.37 80.43 99.50 100 100

NMT 25.52 67.48 97.21 100 100

NMTcc 14.07 52.93 94.56 100 100

HT 68.95 95.66 99.92 100 100

IT 53.17 91.73 99.83 100 100

RRT 82.31 97.51 99.95 100 100

ODMT 80.95 97.22 99.94 100 100

RRTcc 68.91 95.65 99.92 100 100

ODMTcc 68.69 95.60 99.91 100 100

E(n12 + n21) 9.22 13.54 22.20 43.89 87.49

SD(n12 + n21) 2.15 2.66 3.48 4.94 7.02
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Table 9. Powers (in %) for p1· = 0.30, p·1 = 0.70, and θ = 10.

Method n = 20 n = 30 n = 50 n = 100 n = 200

CET 53.03 91.52 99.87 100 100

MidpT 69.13 95.38 99.93 100 100

MT 69.13 95.38 99.93 100 100

UET 69.13 95.38 99.93 100 100

MTYcc 53.03 91.44 99.83 100 100

MTcc1 69.13 95.38 99.93 100 100

MTcc2 69.13 95.38 99.93 100 100

MTcc3 69.13 95.38 99.93 100 100

MMT 69.13 95.32 99.92 100 100

WT 81.78 97.60 99.96 100 100

MWT 72.10 95.93 99.93 100 100

LRT 81.78 97.60 99.95 100 100

UMT 36.28 80.49 99.39 100 100

ULRT 36.28 80.49 99.39 100 100

NMT 22.60 56.57 94.04 100 100

NMTcc 11.43 42.46 90.09 100 100

HT 69.13 95.38 99.93 100 100

IT 53.03 91.44 99.83 100 100

RRT 71.63 95.93 99.94 100 100

ODMT 72.24 95.93 99.93 100 100

RRTcc 60.79 94.49 99.92 100 100

ODMTcc 60.82 95.07 99.92 100 100

E(n12 + n21) 9.21 13.56 22.23 43.95 87.58

SD(n12 + n21) 2.16 2.67 3.47 4.96 6.96

5. General Rules of Application

From the results obtained in the simulation experiments and only considering sample
size n (as it is the only parameter set by the researcher), one can provide the following
general rules of application for the test statistics:

• When the sample size is small, use the WT, LRT, RRT, or ODMT methods; since they
are the least conservative methods, they have the greatest power, and their powers are
similar.

• When the sample size is moderate, use the WT, LRT, RRT, or ODMT methods; since
their type I error rates fluctuate around α = 5%, they have the greatest power, and
their powers are similar.

• When the sample size is large, use the MT, WT, MWT, LRT, RRT, and ODMT methods;
since their type I error rates fluctuate around α = 5%, they have the greatest power,
and the powers of these methods are very similar.

The graphs in Figure 1 show the type I error rates of the selected methods, and the
graphs in Figure 2 show the powers of these methods for different scenarios. The graphs
in Figure 1 show how the WT, LRT, RRT, and ODMT methods have a type I error rate
with better behaviour than the MT and MWT methods when the sample size is small or
moderate, with their values being very similar when the sample is large. In the graphs in
Figure 2, it can be seen that the power of MT is a little lower than that of the other methods
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when the sample size is small. Likewise, the powers of these methods are very similar
when the sample size is moderate or large.
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6. Example

The results have been applied to the diagnosis of coronary artery disease using dobu-
tamine echocardiography (DE, test 1) and myocardial perfusion scintigraphy (MPS, test 2)
as diagnostic tests and coronary angiography (CA) as the gold standard. The objective of
this study is to compare the sensitivities (specificities) of the two diagnostic tests. Table 10
shows the frequencies observed in the study, the estimate of each sensitivity (Se) and of each
specificity (Sp), and the results of each method to resolve the respective comparisons. The
comparison of the two sensitivities (specificities) has been carried out using the function
“pairedProp”, which is a function written in R that allows for comparing two paired bino-
mial proportions using the methods recommended in Section 4. This function is attached as
a Supplementary Material to the manuscript. The sentence to compare the two sensitivities
is as follows:

pairedProp(152, 17, 7, 36),

and the sentence to compare the two specificities is as follows:

pairedProp(25, 10, 11, 290).

Table 10. Diagnosis of coronary artery disease: frequencies and results of comparisons of sensitivities
and specificities.

Observed Frequencies

Positive DE Negative DE

Positive MPS Negative MPS Positive MPS Negative MPS Total

Positive CA 152 17 7 36 212
Negative CA 25 10 11 290 336

Total 177 27 18 326 548

Comparison of sensitivities: H0 : Se1 = Se2 vs H1 : Se1 ̸= Se2

MT WT MWT LRT RRT ODMT

χ2 = 4.167
p-value = 0.041

χ2 = 4.250
p-value = 0.039

χ2 = 4.077
p-value = 0.0403

χ2 = 4.296
p-value = 0.038

χ2 = 4.169
p-value = 0.041

χ2 = 4.191
p-value = 0.041

Comparison of specificities: H0 : Sp1 = Sp2 vs H1 : Sp1 ̸= Sp2

MT WT MWT LRT RRT ODMT

χ2 = 0.048
p-value = 0.827

χ2 = 0.048
p-value = 0.827

χ2 = 0.045
p-value = 0.831

χ2 = 0.048
p-value = 0.827

χ2 = 0.048
p-value = 0.827

χ2 = 0.048
p-value = 0.827

In this example, the number of patients with coronary artery disease and the number of
patients without coronary artery disease are large, and therefore, all the methods indicated
in Section 4 can be applied. The estimates of the sensitivities and specificities of the
diagnostic tests are as follows: Ŝe1 = 0.797, Ŝe2 = 0.750, Ŝp1 = 1 − 0.104 = 0.896, and
Ŝp2 = 1 − 0.107 = 0.896. With fixed α = 5%, the equality of the two sensitivities is rejected,
and the equality of the two specificities is not rejected. It is concluded that the sensitivity of
the DE test is significantly greater than the sensitivity of the MPS test.

In this example, it can be seen that the p-values of all the methods to compare the two
sensitivities (specificities) are very similar to each other, and therefore, the conclusions are
the same.

7. Discussion

The comparison of two paired binomial proportions is a problem that appears fre-
quently in medical and clinical studies. In the statistical literature, there are diverse methods
proposed to solve this hypothesis test, and therefore, it is necessary to determine which
methods have the best asymptotic behaviour in terms of the type I error rate and power.
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We reviewed 19 existing methods and proposed 5 new ones, and we carried out broad
simulation experiments to study their asymptotic behaviour. From the results obtained, we
have given some general rules of application for the methods studied.

May and Johnson [9] compared through simulation experiments the asymptotic be-
haviour of eight methods (CET, MidpT, MT, MTYcc, MMT, WT, MWT, and LRT) and recom-
mended using the MidpT, MWT, and MT methods when it is verified that n12 + n21 ≤ 40.
May and Johnson used the criterion that the type I error rate must not be higher than
α = 5%.

Park [10] has compared, using the same criteria as May and Johnson, the asymptotic
behavior of the CET, MT, LRT, and WT methods, concluding that the method with the best
behavior is the MT.

Fagerland et al. [11–13] also compared through simulation experiments the asymptotic
behaviour of five methods: CET, MidpT, UET, MT, and MTYcc. These authors used the
same criterion as May and Johnson and recommended using the MidpT and MT methods.

The studies of May and Johnson [9] and Fagerland et al. [11–13] used the same criterion
to assess the type I error rates, and both studies recommended the MidpT and MT methods.
Park [10] recommends the MT method.

Our criterion to assess the type I error rate of each method is more flexible, allowing
for a method to be higher than α = 5% without being too liberal. Regarding the asymptotic
behaviour of an approximate test, it is to be expected that its type I error rate will fluctuate
around the level of the nominal error when the sample size is large, and therefore, it can
be higher than that of the nominal error level. With our criterion, it can be slightly higher
than the level of the nominal error. Regarding an exact test, its type I error rate must not be
higher than the level of the nominal error, as happens with the results obtained for CET
and UET (Tables 2–5).

The simulation experiments carried out allowed us to establish some general rules
of application for the methods. The WT, LRT, RRT, and ODMT methods can be used for
whatever the sample size is, and if the sample size is large, then the MT and MWT methods
can also be applied. Of these six methods, two are conditioned methods (MT and LRT), and
four are unconditioned (WT, MWT, RRT, ODMT); therefore, the problem can be addressed
without any problem from both perspectives (conditioned and unconditioned), obtaining
results that are very similar. Another important conclusion obtained from the simulation
experiments is that continuity corrections do not improve the asymptotic behaviors of the
studied methods. Therefore, although in the statistical literature there are different methods
that incorporate continuity corrections, their application is not justified.

In this manuscript, we have studied the comparison of two paired proportions using
hypothesis tests. An alternative method is to carry out this comparison using confidence
intervals instead of hypothesis testing. In this context, there are also numerous intervals
(exact and approximate) that can be used [4,13–16]. In Fagerland et al. [12,13], the behaviour
of some of the most used is compared, but it may currently be somewhat incomplete. There-
fore, given that new confidence intervals have been investigated in recent years [14–16], it
is of great interest from a practical point of view to determine which intervals have the best
asymptotic behaviour.
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