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Simple Summary: Alkylphospholipids (APLs) are compounds currently under investigation due
to their potential to target cancer cells and inhibit their growth. Although their mechanism of ac-
tion is not fully understood, it is well known that they interfere with the way cancer cells manage
membrane lipid metabolism, particularly affecting their phosphatidylcholine and cholesterol lev-
els. Mitochondria, essential cellular organelles, require cholesterol for proper functioning, which
involves energy production for the cell. Therefore, our aim was to analyze whether APLs could also
interfere with mitochondria in colorectal cancer cells. Our findings indicate that APLs, especially
perifosine, alter mitochondrial function and lead to an increase in toxic subproducts that damage
cells. Consequently, this treatment reduces the viability of colorectal cancer cells by interfering with
mitochondrial function.

Abstract: Alkylphospholipids (APLs) have been studied as anticancer drugs that interfere with
biological membranes without targeting DNA. Although their mechanism of action is not fully eluci-
dated yet, it is known that they disrupt the intracellular trafficking of cholesterol and its metabolism.
Here, we analyzed whether APLs could also interfere with mitochondrial function. For this purpose,
we used HT29 colorectal cancer cells, derived from a primary tumor, and SW620 colorectal cancer
cells, derived from a metastasis site. After treatment with the APLs miltefosine and perifosine, we
analyzed various mitochondrial parameters, including mitochondrial mass, cardiolipin content, mito-
chondrial membrane potential, H2O2 production, the levels of oxidative phosphorylation (OXPHOS)
complexes, metabolic enzymes activity, the oxygen consumption rate, and the levels of apoptosis
and autophagy markers. APLs, especially perifosine, increased mitochondrial mass while OXPHOS
complexes levels were decreased without affecting the total oxygen consumption rate. Additionally,
we observed an increase in pyruvate dehydrogenase (PDH) and isocitrate dehydrogenase (IDH)
levels and a decrease in lactate dehydrogenase (LDH) activity, suggesting a metabolic rewiring
induced by perifosine. These alterations led to higher mitochondrial membrane potential, which
was potentiated by decreased uncoupling protein 2 (UCP2) levels and increased reactive oxygen
species (ROS) production. Consequently, perifosine induced an imbalance in mitochondrial function,
resulting in higher ROS production that ultimately impacted cellular viability.
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1. Introduction

Alkylphospholipids (APLs) are a class of anticancer drugs that inhibit the proliferation
of cancer cells without targeting the DNA [1]. Their chemical structure, similar to lysophos-
phatidylcholines (lysoPCs), enables them to interfere with cellular membranes [1,2], acting
as detergents and inducing apoptosis [3,4]. APLs seem to exhibit higher specificity toward
cancer cells, as they show higher uptake of these compounds compared to normal cells
and exhibit higher apoptosis rates [1]. They have been tested in a wide variety of cancers,
including breast cancer [5,6], colon cancer [7–9], hepatoblastoma and glioblastoma [10,11],
and hematologic malignancies [12,13], among others. In fact, they have been assessed in
combination with chemotherapeutic drugs or radiotherapy, obtaining better outcomes
compared to separate treatments [1,8,14,15].

APLs are chemically categorized into two groups: alkyl-lysophospholipids and
alkylphosphocholines (APC). The most common APCs are miltefosine (first generation),
which is used as a validated drug [16], and perifosine (second generation) [4]. Perifo-
sine (D-21266 octadecyl-(1,1-dimethyl-piperidino-4-yl)-phosphate) is an APC that has
undergone structural modification to improve the therapeutic potency of miltefosine
(2-(hexadecoxy-oxido-phosphoryl)oxyethyl-trimethyl-azanium) [1,4]. This modification
involves a heterocyclic piperidine group replacing the choline unit, increasing the drug’s
stability and preventing rapid metabolic degradation by phospholipases [1].

The mechanism behind apoptosis induction by APLs is not yet fully elucidated. It has
been reported that APLs alter the cholesterol transport from the plasma membrane to the
endoplasmic reticulum, preventing its esterification [1]. Thus, APLs stimulate intracellular
cholesterol synthesis and upregulate genes involved in extracellular cholesterol uptake [11].
Via this mechanism, APLs ultimately elevate intracellular cholesterol levels while reducing
the synthesis of choline-containing phospholipids, interfering with membrane fluidity [1].
Additionally, APLs also affect membrane-dependent signaling pathways such as PI3K-Akt,
Raf-Erk1/2 [3], or phospholipase C [17], possibly due to their accumulation in membranes
and the disruption of lipid rafts domains [18,19]. Furthermore, APLs may also impede cell
proliferation by blocking autophagy flux, impeding the fusion of autophagosomes with
lysosomes [10].

APLs also interfere with the membranes of organelles, including mitochondria [20].
While mitochondria possess a low content of cholesterol in their membranes, this content is
tightly regulated [21]. It has been reported that solid tumors increase cholesterol content in
mitochondrial membranes, which correlates with tumor malignancy and increased resis-
tance to apoptosis [22]. This elevation in cholesterol can lead to mitochondrial dysfunction,
enhancing the Warburg effect in cancer cells. Indeed, perifosine has been described to affect
oxidative phosphorylation in isolated mitochondria [2].

The aim of this study was to determine the effect of miltefosine and perifosine on
human colon cancer cells, especially analyzing their possible impact on mitochondrial
function. HT29, a primary cancer cell line, and SW620, a metastatic cancer cell line, were
employed to investigate whether APLs may exert differential effects on cancer cells depend-
ing on their cancer metastatic potential. For this purpose, we first assessed the effect of
these APLs on cell viability, mitochondrial parameters, and reactive oxygen species (ROS)
production, followed by a detailed analysis of the effects of perifosine on mitochondrial
metabolism. Our findings indicate that APLs, specifically perifosine, alter mitochondrial
mass and function, which may lead to a metabolic switch and increased ROS production,
ultimately affecting cell viability.

2. Materials and Methods
2.1. Reagents

Dulbecco’s Modified Eagle’s Medium (DMEM) high glucose was obtained from
GIBCO (Paisley, UK). Fetal bovine serum (FBS) and penicillin/streptomycin were pur-
chased from Biological Industries (Kibbutz Beit Haemek, Israel). Perifosine and miltefosine
were obtained from the group of Biomembranes (CTS-236) of the University of Granada.
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Routine chemicals were supplied by Sigma-Aldrich, Panreac (Barcelona, Spain), Thermo
Fisher (Waltham, MA, USA), and Bio-Rad Laboratories (Hercules, CA, USA).

2.2. Cell Culture and Treatments

Human colon cancer cell lines HT29 and SW620 were purchased from the American
Type Culture Collection (ATCC; Manassas, VA, USA). HT29 cells are derived from a
primary colorectal adenocarcinoma, while SW620 are derived from a metastasis in a lymph
node. Cells were routinely cultured in DMEM supplemented with 10% FBS and 1% (v/v)
penicillin/streptomycin in a humidified atmosphere at 37 ◦C with 5% CO2.

Perifosine and miltefosine were dissolved in sterile H2O, creating a 5 mM stock
solution, which was aliquoted and stored at −20 ◦C until use and thawed a maximum
of two times. For experiments involving fluorimetry assays, cells were seeded in 96-well
plates at a density of 5 × 104 cells/well for the HT29 cell line and 4 × 104 cells/well for
the S6W20 cell line. For the rest of the experiments, cells were seeded in 6-well plates
at a density of 1.5 × 106 cells/well. The next day, cells were treated with the indicated
concentrations of vehicle (sterile H2O), miltefosine, or perifosine for 48h.

2.3. Determination of Cell Viability

After treatment, cell viability was determined via DNA staining with Hoechst 33342.
Briefly, cell culture media was removed, and cells were rinsed once with sterile PBS. Then,
0.5 µg/well Hoechst 33342 was incubated for 5 min at 37 ◦C with 5% CO2. Fluorescence was
measured in an FLx800 microplate reader (BIO-TEK, Winooski, VT, USA) set at 360/40 nm
and 460/40 nm excitation and emission wavelengths, respectively.

2.4. Analysis of Mitochondrial Parameters

MitoTracker™ Green (MTG, #M7514, Invitrogen, Waltham, MA, USA) was used to
estimate mitochondrial mass, and cardiolipin content was analyzed using the fluoromet-
ric probe nonyl acridine orange (NAO, Å1372, Invitrogen). These measurements were
conducted as exposed in [23]. Mitochondrial membrane potential was determined with
the tetramethylrhodamine methyl ester probe (TMRM, #T668, Invitrogen). Cells were
incubated with 10 nM TMRM for 15 min at 37 ◦C with 5% CO2. Then, fresh media was
added, and cells were incubated for 10 more min. Finally, cells were rinsed with sterile
PBS, and fluorescence was measured in an FLx800 microplate reader (BIO-TEK, Winooski,
VT, USA). The excitation wavelength was set at 530/20 nm and the emission wavelength
at 590/20 nm. All fluorescence values were normalized per cell viability determined by
Hoechst 33342, as described previously.

2.5. Measurement of H2O2 Production

Amplex® Red Hydrogen Peroxide/Peroxidase Assay kit (#A22188, Invitrogen) was
used to determine H2O2 production as described before [24]. Briefly, cells were incubated
with 50 µM Amplex Red and 0.1 U/mL HRP in Krebs–Ringer buffer, and fluorescence
was recorded at different times. Values were normalized with cell viability determined by
Hoechst 33342.

2.6. Western Blot

After APL treatment, cells were scraped into 200 µL of RIPA buffer (50 mM Tris-HCl
pH 7.5, 150 mM NaCl, 0.1% SDS, 0.5% deoxycholate, and 1% Triton X-100, 10 mM EDTA)
and protease and phosphatase inhibitors (10 µM leupeptin, 10 µM pepstatin, 2 mM PMSF,
1 mM NaF, and 1 mM Na3VO4). Cells were then sonicated on ice at 40% amplitude for
10 s three times (Vibra Cell Ultrasonic Processor 75185). Samples were then centrifuged at
14,000× g for 10 min at 4 ◦C, and protein content was determined with the BCA assay kit
(#23227, Pierce, Bonn, Germany) following the manufacturer’s instructions.

For Western Blots, 35 µg of protein were separated into SDS-PAGE gels, preparing
15% resolving gels of 30% acrylamide/bis solution for the OXPHOS complexes and 12%
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resolving for the other proteins. Then, proteins were electrotransferred onto nitrocellulose
membranes with the Trans-blot Turbo system (Bio-Rad) and incubated in a blocking solution
of 5% non-fat powdered milk in TBS-Tween (0.05% Tween 20) for 1 h. The following
antibodies were incubated overnight at 4 ◦C: total OXPHOS human WB antibody cocktail
(1:500 dilution, #MS601, Abcam, Orlando, FL, USA); PARP (1:1000 dilution, 46D11, #9542,
Cell Signaling Technology, Danvers, MA, USA); IDH2 (1:1000 dilution, D7H6Q, #12652, Cell
Signaling Technology, Danvers, MA, USA); LC3A/B (1:1000 dilution, #4108, Cell Signaling
Technology, Danvers, MA, USA); UCP2 (1:1000 dilution, G-6, #sc-390189, Santa Cruz
Biotechnology, Santa Cruz, CA, USA); PDH-E1α (1:500 dilution, D-6, sc-377096, Santa Cruz
Biotechnology, Santa Cruz, CA, USA); GAPDH (1:500 dilution, FL-335, sc-25778, Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Protein bands were visualized with ImmunStar™
Westen C™ Chemiluminescent Kit Western blotting detection systems using a Chemidox
XRS densitometer (Bio-Rad). Results were analyzed using Quantity One Software (version
4.6.6, Bio-Rad). GAPDH was used as a loading control for all blots.

2.7. Enzymatic Activities

Cells were harvested by scraping them into 200 µL of STE (Sodium Chloride-Tris-
EDTA) buffer as described in [25]; enzymatic activities were analyzed immediately after
with different spectrophotometric assays. Cytochrome c oxidase (COX) and lactate dehy-
drogenase (LDH) activities were determined as described before [25].

2.8. Oxygen Consumption Rate (OCR)

The real-time oxygen consumption rate was determined using the Seahorse Extra-
cellular Flux (XFe96) analyzer (Seahorse Bioscience, Billerica, MA, USA) as described
in [23]. Cells were seeded at a density of 1.8 × 104 cells/well in XFe96 plates and incu-
bated overnight at 37 ◦C with 5% CO2. The next day, cells were treated with perifosine
for 48 h. For OCR determination, the following inhibitors were used: 1 µM oligomycin,
2 µM FCCP, 0.5 µM rotenone, and 0.5 µM antimycin A. To normalize OCR values by cell
viability, a parallel plate was seeded, and cell viability was determined with Hoechst 33342,
as described before.

2.9. Statistical Analyses

The Statistical Program for the Social Sciences software (SPPS, version 24.0; Chicago,
IL, USA) was used for all statistical analyses. Results are presented as means ± standard
error of the mean (SEM). Statistical differences between control and miltefosine-treated cells
and control and perifosine-treated cells were analyzed using Student’s t-test. Statistical
significance was set at p-value < 0.05.

3. Results
3.1. APLs Decrease Cell Viability in Colon Cancer Cells

We first assessed cell viability in HT29, a primary colon cancer cell line, and SW620, a
metastatic colon cancer cell line. We observed a reduction in cell viability of 30–40% in both
cell lines at 100 µM miltefosine and 60 µM perifosine (Figure 1).

3.2. APLs Increase Mitochondrial Mass and H2O2 Production

Next, we analyzed several mitochondria-related parameters to evaluate mitochondrial
mass and functionality. Miltefosine and perifosine significantly increased MTG fluores-
cence (Figure 2A), a marker of mitochondrial mass, to a similar extent in both cell lines.
Interestingly, SW620 exhibited higher MTG fluorescence levels after treatment than HT29
(+108.0–105.5% in SW620 and +55.3–57.1% in HT29). On the other hand, NAO fluorescence,
a marker of cardiolipin content, was increased after treatment with perifosine in the HT29
line (+36.2%), while it remained unchanged with miltefosine treatment (Figure 2B). In
contrast, both treatments significantly increased NAO fluorescence in the metastatic cell
line SW620 (+109.6% and +128.5%, respectively).
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Figure 1. Cell viability was reduced after APL treatment. Cell viability was analyzed via Hoechst
33342 staining. Cells were treated with vehicle (“CTRL”, white bars), 100 µM miltefosine (“MIL”,
grey bars), or 60 µM perifosine (“PER”, black bars). Results are presented as the mean ± SEM (n = 6),
and control cells were set at 100%. Student’s t-test was performed to check statistical differences:
*** p-value < 0.001.
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Figure 2. APL treatment increases mitochondrial mass and reactive oxygen species production.
(A) Mitotracker™ Green (MTG) fluorescence; (B) Nonyl acridine orange (NAO) fluorescence;
(C) Tetramethylrhodamine methyl ester (TMRM) fluorescence; (D) H2O2 production measured
by Amplex Red fluorescence. Cells were treated with vehicle (“CTRL”, white bars), 100 µM mil-
tefosine (“MIL”, grey bars), or 60 µM perifosine (“PER”, black bars). Results are presented as the
mean ± SEM (n = 6), and control cells were set at 100%. Student’s t-test was performed to check
statistical differences: * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

Then, we evaluated mitochondrial membrane potential with the TMRM probe.
(Figure 2C). In HT29 cells, we observed a significant increase in TMRM fluorescence
only with perifosine treatment (+73.6%), while SW620 cell showed mildly but significantly
higher TMRM fluorescence with both treatments (+26% with miltefosine and +34% with
perifosine). Finally, since mitochondria are the main source of ROS, we analyzed H2O2
production. As expected, H2O2 production increased in both cell lines after treatments,
reaching higher levels with perifosine treatment (+124.2% in HT29 cells and +89.8% in
SW620 cells) (Figure 2D). Together, these results suggest that APLs increase mitochondrial
mass and functionality, therefore increasing ROS production.
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3.3. Oxidative Phosphorylation Complexes Are Affected by APL Treatment

To further check the effect of APLs on mitochondria, we determined the levels of the
OXPHOS complexes via Western Blot (Figure 3). Levels of complex I (NADH dehydroge-
nase, subunit NDUFB8) remained unaffected by treatment; only SW620 cells treated with
miltefosine showed a tendency to decrease complex I levels (p-value = 0.075). Complexes
II (succinate dehydrogenase, subunit 30 kDa) and III (ubiquinol–cytochrome c reductase,
subunit Core 2) presented decreased levels in both cell lines with APL treatment, resulting
in a reduction of over 40%. In SW620 cells, only complex IV (cytochrome c oxidase, subunit
II) was affected by perifosine treatment, showing a 39% reduction in its levels. On the
other hand, in HT29 cells, both miltefosine and perifosine treatments resulted in a decrease
(−42% and −55%, respectively) in the levels of complex V (ATP synthase, subunit alpha).
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Figure 3. APL treatment changed OXPHOS levels. (A) Complex I levels (NDUFB); (B) Complex II
levels (SDHB); (C) Complex III levels (UQCRC2); (D) Complex IV levels (COX II); (E) Complex V
levels (ATP5A); (F) Representative bands of all complexes obtained by Western Blot (Original file see
Supplementary Materials). GAPDH was used as a loading control. Cells were treated with vehicle
(“CTRL”, white bars), 100 µM miltefosine (“MIL”, grey bars), or 60 µM perifosine (“PER”, black bars).
Results are presented as the mean ± SEM (n = 6), and control cells were set at 100%. Student’s t-test
was performed to check statistical differences: * p-value < 0.05, ** p-value < 0.01.

Interestingly, when analyzing the complex IV/complex V ratio, both cell lines were
affected by APL treatment in a different manner (Table 1). HT29 cells exhibited a higher
complex IV/complex V ratio, contrary to SW620 cells, which showed a lower ratio.

Table 1. Complex IV/Complex V ratio for both cell lines after APL treatment. Results are presented
as the mean ± SEM (n = 6), and control cells were set at 1. Student’s t-test was performed to check
statistical differences: * p-value < 0.05.

HT29 SW620

CTRL 1.00 ± 0.08 1.00 ± 0.13
MIL 1.18 ± 0.34 0.81 ± 0.18
PER 1.72 ± 0.37 * 0.66 ± 0.06 *

3.4. Perifosine Alters Mitochondrial Function

Considering that the results obtained so far show similar effects of both APLs on the
two different cell lines, and perifosine is a modification of miltefosine that enhances its
activity, from now on, we will focus solely on functional analyses using perifosine.

To further check the mitochondrial function, we analyzed the levels of pyruvate
dehydrogenase (PDH), isocitrate dehydrogenase (IDH), and uncoupling protein 2 (UCP2).
PDH levels were significantly increased in the HT29 cell line in response to perifosine
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(Figure 4A), while the SW620 cell line increased IDH levels (Figure 4B). Additionally,
perifosine significantly reduced the levels of UCP2 in HT29 (Figure 4C), reaching 23% of
vehicle-treated cells. We also observed a reduction in UCP2 levels in SW620, although it
did not reach statistical significance (p-value = 0.055).
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Figure 4. Perifosine affects mitochondrial function at protein level. (A) Pyruvate dehydrogenase
(PDH) protein levels; (B) Isocitrate dehydrogenase (IDH) protein levels; (C) Uncoupling protein 2
(UCP2) protein levels; (D) Representative bands obtained via Western Blot (Original file see Supple-
mentary Materials). GAPDH was used as a loading control. Cells were treated with vehicle (“CTRL”,
white bars) or 60 µM perifosine (“PER”, black bars). Results are presented as the mean ± SEM (n = 6),
and control cells were set at 100%. Student’s t-test was performed to check statistical differences:
** p-value < 0.01, * p-value < 0.05.

Next, we assessed oxygen consumption (Table 2). We did not find any statistically
significant changes in basal oxygen consumption, maximal respiration, or proton leak.
However, SW620 cells exhibited a dramatic decrease in mitochondrial ATP production.

Table 2. Oxygen consumption rate (OCR) after APL treatment. Results are presented as the
mean ± SEM in pmol/min (n = 3). Student’s t-test was performed to check statistical differences:
* p-value < 0.05.

HT29 SW620
CTRL PER CTRL PER

Basal OCR 46.2 ± 10.2 46.0 ± 16.1 24.6 ± 1.3 15.18 ± 7.9
Maximal respiration 81.2 ± 19.2 53.9 ± 11.0 37.4 ± 0.9 25.7 ± 8.2

Proton leak 46.1 ± 10.8 42.7 ± 16.4 17.4 ± 1.6 17.89 ± 8.8
ATP production 2.05 ± 0.71 3.31 ± 1.39 7.17 ± 0.34 0.77 ± 0.11 *

Lastly, Figure 5 shows the enzymatic activities of complex IV (COX) and lactate
dehydrogenase (LDH). We found that in HT29 cells, COX activity was increased by 30.8%
after perifosine treatment, while in SW620, despite the decrease in protein levels, COX
enzymatic activity was preserved. Moreover, SW620 cells also showed decreased LDH
enzymatic activity after treatment.
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Figure 5. Perifosine alters the enzymatic activities of metabolic enzymes. (A) Complex IV (COX)
enzymatic activity; (B) Lactate dehydrogenase (LDH) enzymatic activity. Cells were treated with
vehicle (“CTRL”, white bars) or 60 µM perifosine (“PER”, black bars). Results are presented as the
mean ± SEM (n = 3) for COX activity, and control cells were set at 100%. For the LDH activity, results
are shown as international units (IU) per gram of protein (n = 3). Student’s t-test was performed to
check statistical differences: * p-value < 0.05.

Altogether, these results suggest that, despite the decrease in complex V levels in
HT29 cells after perifosine treatment, ATP production is preserved, presumably due to the
reduced levels of UCP2. This reduction in UCP2 may lead to a better coupling efficiency
of the respiratory chain, enhancing ATP synthase activity. On the other hand, in SW620
cells, perifosine reduced the ratio complex IV/complex V, and although UCP2 levels also
seemed to be decreased, mitochondrial ATP production dropped drastically.

3.5. Perifosine Increases PARP Cleavage and LC3-II Levels

Finally, we analyzed PARP cleavage as a marker of apoptosis and LC3-II as a marker
of autophagy to further assess the effects of perifosine (Figure 6). Figure 6A,C show a
great increase in the levels of cleaved PARP, resulting in a higher cleaved PARP/total
PARP ratio after treatment with perifosine. On the other hand, the LC3-II/LC3-I ratio also
increased in both cell lines after perifosine treatment (Figure 6B,C), also suggesting an
increase in autophagy.
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Figure 6. Perifosine increases markers of apoptosis and autophagy. (A) Cleaved PARP/Total PARP
ratio; (B) LC3A/B-II/LC3A/B-I ratio; (C) representative bands obtained via Western Blot (Original
file see Supplementary Materials). GAPDH was used as a loading control. Cells were treated with
vehicle (“CTRL”, white bars) or 60 µM perifosine (“PER”, black bars). Results are presented as the
mean ± SEM (n = 6), and control cells were set at 100%. Student’s t-test was performed to check
statistical differences: * p-value < 0.05; *** p-value < 0.001.

4. Discussion

In this study, we showed that APLs in colorectal cancer cell lines decrease cell viability
and alter the mitochondrial pool, increasing mitochondrial mass, cardiolipin content, and
mitochondrial membrane potential, ultimately increasing ROS production. Concretely,
perifosine treatment produced a general decrease in the protein levels of the OXPHOS
complexes, although the basal oxygen consumption rate was unaltered. Furthermore,
perifosine increased the levels of PDH and IDH while decreasing the levels of UCP2
and the activity of COX and LDH, suggesting a metabolic rewiring. These results are
summarized in Figure 7.
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Figure 7. Summary of the effects of Alkylphospholipids, with a special focus on perifosine on
colon cancer cells. APLs interfere with mitochondrial function, presumably inducing a metabolic
change and leading to an increase in ROS production, which decreases cell viability via an increase
in apoptosis.

We have shown here that APLs produce significant changes in the mitochondrial pool.
Concretely, APL-treated cells showed an increase in mitochondrial mass, as seen by the rise
in MTG fluorescence. Indeed, the cardiolipin content, which is the major phospholipid of
the mitochondrial inner membrane [26], was also higher after APL treatment. Cardiolipin
enhances the activity of some complexes of the mitochondrial respiratory chain, especially
complex IV and III, and has been described to facilitate the assembly and stabilization of
supercomplexes [26,27]. Despite the general decrease in the protein levels of OXPHOS,
we did not observe any major changes in mitochondrial oxygen consumption, suggesting
a preservation of their enzymatic activity. Thus, this increase in cardiolipin may be a
compensatory mechanism to overcome the reduced levels of OXPHOS complexes and
maintain the respiratory chain function via supercomplex formation and stability.

On the other hand, it is known that interfering with the quantity of cholesterol in
mitochondrial membranes could lead to alterations in mitochondrial function [22,28]. As
APLs and, concretely, perifosine have shown an interference with intracellular cholesterol
trafficking [1], mitochondrial cholesterol could be affected by this treatment. In fact, treat-
ment with perifosine has previously shown mitochondria with more dilated cristae [10],
suggesting mitochondrial function alterations.

In this regard, we have observed an increase in the mitochondrial membrane potential
in both cell lines, along with a severe downregulation of UCP2 levels. The membrane
potential is generated by the OXPHOS complexes, specifically by the proton-pumping
mechanism of complexes I, III, and IV. Then, the complex V (ATP synthase) uses the
electrochemical gradient generated to synthesize ATP from ADP and phosphate [29]. On
the other hand, one of the functions of UCP2 is to facilitate the reentry of protons into the
mitochondrial matrix, bypassing the complex V [30]. In fact, UCP2 has been connected to
metabolic rewiring, as it is upregulated in human colon cancer in response to oxidative stress
and could be associated with tumor progression [31], so it is expected that cancer cells rely
on this protein to maintain their aggressiveness. The preserved oxygen consumption and
increase in COX activity could explain the increase in mitochondrial membrane potential
observed. Additionally, the dramatic decrease in UCP2 levels we observed after perifosine
treatment suggests that the protons pumped by the OXPHOS complexes are retained in the
intermembrane space without any alternative pathway for reentering the matrix.
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The increase in mitochondrial membrane potential is also correlated with hydrogen
peroxide production. In fact, a rise in mitochondrial membrane potential can result in
an increase in superoxide anion [29]. Superoxide is then rapidly transformed to H2O2,
considered a biomarker of ROS production in mitochondria, as almost 90% of ROS are
produced in these organelles due to the respiratory chain [32]. It has been described that
the primary site of generation of ROS are complexes III and I [33]. ROS production can
occur when there are highly reduced coenzyme Q levels with maximal mitochondrial
membrane potential. In this situation, the reduced coenzyme Q is used by the complex I
for the reduction in NAD+ to NADH. This process is known as reverse electron transfer
or RET. The reduced coenzyme Q is also oxidized by complex III. Regarding this matter,
the treatment with APLs decreased the levels of complex III, which could induce the
accumulation of reduced coenzyme Q and the production of ROS involving RET [34]. The
level of complex I showed a tendency to increase in HT29 cells after treatment, which
could potentiate the effect of RET. In addition, the increase in the mitochondrial membrane
potential observed could affect the RET and increase ROS production by the saturation of
ATP synthase.

Furthermore, perifosine treatment increased both PDH and IDH levels. PDH is re-
sponsible for the entry of pyruvate into the Krebs cycle, while IDH converts isocitrate to
alpha-ketoglutarate [35]. The higher levels of these mitochondrial enzymes could increase
the Krebs cycle flux, which could be related to the increase observed in other mitochondrial
parameters. We also observed a decrease in LDH activity, which could imply an increased
pool of acetyl-CoA in the cell, which would presumably be derived from cholesterol
synthesis, as has been described before [11].

On the other hand, this study showed some differences in mitochondrial parame-
ters between cell lines. Cardiolipin content and mitochondrial mass were higher in the
metastatic cell line SW620 than in the primary tumor cell line HT29 after APL treatment,
while mitochondrial ATP production in SW620 cells dropped dramatically. It has been
observed that the drug membrane uptake and the effect of ALPs are higher in the malignant
state of the cells [8]. Then, it is possible that membrane uptake of perifosine is higher in
SW620, explaining the difference in the effects observed. Furthermore, it is known that
lipid rafts are distinct between primary and metastatic tumors [36]. As such, APLs can
interfere with lipid rafts [19], which could also explain the differential response of the two
cell lines.

All these alterations could be responsible, at least in part, for the reduced viability
observed after treatment in both cell lines. We have observed an important increase in
cleaved PARP and the ratio of LC3-II/I, suggesting an increase in apoptosis and autophagy.
Increased content of mitochondrial cholesterol has been linked to apoptosis resistance [22]
and the acquisition of chemotherapy resistance [21]. Thus, our results suggest that perifos-
ine could be interfering with mitochondrial function, which could correlate with changes in
cholesterol content, leading to higher apoptosis rates. On the other hand, autophagy could
be induced by oxidative stress [4], and it is known that perifosine produces a blockage in
the autophagy flux that leads to decreased cell proliferation [10]. Thus, our results suggest
that perifosine is also interfering with the autophagy process and could be responsible for
the decreased cell viability.

5. Conclusions

Summing up, mitochondrial functionality is modified by perifosine, resulting in
an increase in ROS production that could be related to the imbalance in the OXPHOS
complexes. Ultimately, this treatment produces a decrease in cell viability, increasing
apoptosis and autophagy.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12121457/s1, Original uncropped blots.
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