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Abstract
We introduce and study the notion of generating operators as those norm-one operators
G : X −→ Y such that for every 0 < δ < 1, the set {x ∈ X : ‖x‖ ≤ 1, ‖Gx‖ > 1 − δ}
generates the unit ball of X by closed convex hull. This class of operators includes isometric
embeddings, spear operators (actually, operators with the alternative Daugavet property),
and other examples like the natural inclusions of �1 into c0 and of L∞[0, 1] into L1[0, 1].
We first present a characterization in terms of the adjoint operator, make a discussion on the
behaviour of diagonal generating operators on c0-, �1-, and �∞-sums, and present examples
in some classical Banach spaces. Even though rank-one generating operators always attain
their norm, there are generating operators, even of rank-two, which do not attain their norm.
We discuss when a Banach space can be the domain of a generating operator which does
not attain its norm in terms of the behaviour of some spear sets of the dual space. Finally,
we study when the set of all generating operators between two Banach spaces X and Y
generates all non-expansive operators by closed convex hull. We show that this is the case
when X = L1(μ) and Y has the Radon-Nikodým property with respect to μ. Therefore,
when X = �1(�), this is the case for every target space Y . Conversely, we also show that a
real finite-dimensional space X satisfies that generating operators from X to Y generate all
non-expansive operators by closed convex hull only in the case that X is an �1-space.
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1 Introduction

Let X and Y be Banach spaces over the fieldK (K = R orK = C).We denote byL(X , Y ) the
space of all bounded linear operators from X to Y andwrite X∗ = L(X ,K) to denote the dual
space. By BX and SX we denote the closed unit ball and the unit sphere of X , respectively,
and wewriteT for the set of modulus one scalars. Somemore notation and definitions (which
are standard) are included in Subsection 1.1 at the end of this introduction.

The concept of spear operator was introduced in [1] and deeply studied in the book [9].
A norm-one operator G ∈ L(X , Y ) is said to be a spear operator if the norm equality

max
θ∈T ‖G + θT ‖ = 1 + ‖T ‖

holds for all T ∈ L(X , Y ). This concept extends the properties of the identity operator
in those Banach spaces having numerical index one and it is satisfied, for instance, by the
Fourier transform on L1. There are isometric and isomorphic consequences on the domain
and range spaces of a spear operator as, for instance, in the real case, the dual of the domain
of a spear operator with infinite rank has to contain a copy of �1. For more information and
background, we refer the interested reader to the already cited book [9]. Even though the
definition of spear operator given above does not need numerical ranges, it is well known
that spear operators are exactly those operators such that the numerical radius with respect
to them coincides with the operator norm. Let us introduce the relevant definitions. Fixed a
norm-one operator G ∈ L(X , Y ), the numerical radius with respect to G is the seminorm
defined as

vG(T ) := sup{|φ(T )| : φ ∈ L(X , Y )∗, ‖φ‖ = φ(G) = 1}
= inf

δ>0
sup{|y∗(T x)| : y∗ ∈ SY ∗ , x ∈ SX , Re y∗(Gx) > 1 − δ}

for every T ∈ L(X , Y ) (the equality above was proved in [15, Theorem 2.1]). Observe that
vG(·) is a seminorm on L(X , Y ) which clearly satisfies

vG(T ) ≤ ‖T ‖ (T ∈ L(X , Y )). (1)

Then, G is a spear operator if and only if vG(T ) = ‖T ‖ for every T ∈ L(X , Y ) (see [9,
Proposition 3.2]).

Our discussion here starts with the observation that it is possible to introduce a natural
seminorm between vG(T ) and ‖T ‖ in Eq. (1): the (semi-)norm relative to G. Let us introduce
the needed notation and definitions. Let X , Y , Z be Banach spaces and let G ∈ L(X , Y ) be
a norm-one operator. For δ > 0, we write att(G, δ) to denote the δ-attainment set of G, that
is,

att(G, δ) := {x ∈ SX : ‖Gx‖ > 1 − δ}.
If there exists x ∈ SX such that ‖Gx‖ = 1, we say that G attains its norm and we denote by
att(G) the attainment set of G:

att(G) := {x ∈ SX : ‖Gx‖ = 1}.
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We consider the parametric family of norms on L(X , Z) defined by

‖T ‖G,δ := sup {‖T x‖: x ∈ att(G, δ)} (T ∈ L(X , Z))

which are equivalent to the usual norm on L(X , Z) (this is so since att(G, δ) has nonempty
interior). We are interested in the (semi-)norm obtained by taking infimum on this parametric
family.

Definition 1 Let X , Y and Z be Banach spaces and let G ∈ L(X , Y ) be a norm-one operator.
For T ∈ L(X , Z), we define the (semi-)norm of T relative to G by

‖T ‖G := inf
δ>0

‖T ‖G,δ.

When Z = Y , we clearly have that

vG(T ) ≤ ‖T ‖G ≤ ‖T ‖ (T ∈ L(X , Y ))

and so this ‖ · ‖G is the promised seminorm to extend Eq. (1). We may study the possible
equality between vG(·) and ‖ · ‖G and between ‖ · ‖G and the usual operator norm. We left
the first relation for a subsequent paper which is still in process [11]. The main aim in this
manuscript is to study when the norm equality

‖T ‖G = ‖T ‖ (2)

holds true.

Definition 2 Let X , Y be Banach spaces. We say that G ∈ L(X , Y ) with norm-one is gen-
erating (or a generating operator) if equality (2) holds true for all T ∈ L(X , Y ). We denote
by Gen(X , Y ) the set of all generating operators from X to Y .

Observe that both ‖ · ‖G and the operator norm can be defined for operators with domain
X and arbitrary range, so one may wonder if there are different definitions of generating
operators requiring that Eq. (2) holds replacing Y for other range spaces. This is not the case,
as we will show in Sect. 2 that a generating operator G ∈ L(X , Y ) satisfies that ‖T ‖G = ‖T ‖
for every T ∈ L(X , Z) and every Banach space Z (see Corollary 1). This is so thanks to a
characterization of generating operators in terms of the sets att(G, δ): G is generating (if and)
only if conv(att(G, δ)) = BX for every δ > 0, see Corollary 1 again. When the dimension
of X is finite, this is clearly equivalent to the fact that conv(att(G)) = BX (actually, the
same happens for compact operators defined on reflexive spaces, see Proposition 2). For
some infinite-dimensional X , there are generating operators from X which do not attain their
norm, even of rank-two (see Example 3); but there are even generating operators attaining
the norm such that conv(att(G)) has empty interior (see Example 4).

There is another characterization which involves the geometry of the dual space. We need
some definitions. A subset F of the unit ball of a Banach space Z is said to be a spear set of
Z [9, Definition 2.3] if

max
θ∈T sup

z∈F
‖z + θx‖ = 1 + ‖x‖ (x ∈ Z).

If z ∈ SZ satisfies that F = {z} is a spear set, we just say that z is a spear vector and we
write Spear(Z) for the set of spear vectors of Z . We refer the reader to [9, Chapter 2] for
more information and background. We will show that a norm-one operator G ∈ L(X , Y ) is
generating if and only ifG∗(BY ∗) is a spear set of X∗, seeCorollary 5. These characterizations
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appear in Sect. 2, togetherwith a discussion on the behaviour of diagonal generating operators
on c0-, �1-, and �∞-sums, and examples in some classical Banach spaces.

We next discuss in Sect. 3 the relationship between generating operators and norm attain-
ment. On the one hand, we show that rank-one generating operators attain their norm (see
Corollary 8) and, clearly, the same happens with isometric embeddings (which are gener-
ating), or with generating operators whose domain has the RNP (see Corollary 2), as every
generating operator attains its norm on denting points (see Lemma 1). But, on the other
hand, there are generating operators, even of rank two, which do not attain their norm (see
Example 3). We further discuss the possibility for a Banach space X to be the domain of a
generating operator which does not attain its norm in terms of the behaviour of some spear
sets of X∗ (see Theorem 2).

Finally, Sect. 4 is devoted to the study of the set Gen(X , Y ). We show that it is closed
(see Proposition 11), and show that for every Banach space Y , there is a Banach space X
such that Gen(X , Y ) = ∅ (see Proposition 12), but this result is not true for Y = C[0, 1] if
we restrict the space X to be separable (Example 5). We next study properties of Gen(X , Y )

when X is fixed. We first show that Gen(X , Y ) 	= ∅ for every Y if and only if Spear(X∗) 	= ∅
(see Corollary 9) and that the only case in which there is Y such that Gen(X , Y ) = SL(X ,Y )

is when X is one-dimensional (see Corollary 10). We then study the possibility that the set
Gen(X , Y ) generates the unit ball of L(X , Y ) by closed convex hull, showing first that this
is the case when X = L1(μ) and Y has the RNP (Theorem 3) and when X = �1(�) and Y is
arbitrary (see Proposition 15) and that this is the only possibility for real finite-dimensional
spaces (see Proposition 16).

1.1 A bit of notation

Let X , Y be Banach spaces. We write JX : X −→ X∗∗ to denote the natural inclusion of X
into its bidual space. For A ⊂ X , conv(A) and aconv(A) are, respectively, the convex hull
and the absolutely convex hull of A; conv(A) and aconv(A) are, respectively, the closures
of these sets. For B ⊂ X convex, ext(B) denotes the set of extreme points of B. A subset
A ⊆ BX∗ is r -norming for X (0 < r ≤ 1) if r BX∗ ⊆ aconvw∗

(A) or, equivalently, if
r‖x‖ ≤ supx∗∈A |x∗(x)| for every x ∈ X . The most interesting case is r = 1: A is one-
norming for X if BX∗ = aconvw∗

(A) or, equivalently, if ‖x‖ = supx∗∈A |x∗(x)| for every
x ∈ X . A slice of a closed convex bounded set C ⊂ X is a nonempty intersection of C with
an open half-space. We write

Slice(C, f , α) :=
{

x ∈ C : Re f (x) > sup
C

Re f − α

}

where f ∈ X∗ and α > 0, and observe that every slice of C is of the above form.

2 Characterizations, first results, and some examples

Our first result gives different characterizations for the equivalence of ‖ · ‖ and ‖ · ‖G on
L(X , Z). As one may have expected, this does not depend on the range space Z .

Proposition 1 Let X, Y be Banach spaces, let G ∈ L(X , Y ) be a norm-one operator, and let
r ∈ (0, 1]. Then, the following are equivalent:

(i) ‖T ‖G ≥ r‖T ‖ for every Banach space Z and every T ∈ L(X , Z).
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(i i) There is a (non null) Banach space Z such that ‖T ‖G ≥ r‖T ‖ for every T ∈ L(X , Z).
(i i i) There is a (non null) Banach space Z such that ‖T ‖G ≥ r‖T ‖ for every rank-one

operator T ∈ L(X , Z).
(iv) ‖x∗‖G ≥ r‖x∗‖ for every x∗ ∈ X∗.
(v) ‖x∗‖G,δ ≥ r‖x∗‖ for every x∗ ∈ X∗ and every δ > 0.

(vi) conv(att(G, δ)) ⊇ r BX for every δ > 0.

Proof The implications (i) ⇒ (i i) ⇒ (i i i), (iv) ⇔ (v), and (vi) ⇒ (i) are evident.
(i i i) ⇒ (iv). Fix z ∈ SZ and, given x∗ ∈ X∗, consider T = x∗ ⊗ z ∈ L(X , Z) which

obviously satisfies ‖T ‖ = ‖x∗‖ and ‖T ‖G = ‖x∗‖G .
The remaining implication (v) ⇒ (vi) follows from the Bipolar theorem. Indeed, for

δ > 0, take x ∈ r BX , we have to prove that x belongs to att(G, δ)◦◦. For x∗ ∈ att(G, δ)◦,

|x∗(x)| ≤ r‖x∗‖ ≤ ‖x∗‖G,δ = sup
{|x∗(x)| : x ∈ att(G, δ)

} ≤ 1,

where the second inequality follows from (v) and the last one from the fact that x∗ ∈
att(G, δ)◦. Therefore, x ∈ att(G, δ)◦◦ = conv(att(G, δ)). ��

Observe that item (vi) in the previous result just means that, for every δ ∈ (0, 1), the set
att(G, δ) is r -norming for X∗. This leads to the following concept which extends the one of
generating operator.

Definition 3 Let X , Y be Banach spaces, let G ∈ L(X , Y ) be a norm-one operator and let
r ∈ (0, 1]. We say that G is r -generating if conv(att(G, δ)) ⊇ r BX for every δ > 0.

Of course, the case r = 1 coincides with the generating operators introduced in the
introduction. For them, the following characterization deserves to be emphasized.

Corollary 1 Let X, Y be Banach spaces, let G ∈ L(X , Y ) be a norm-one operator. Then, the
following are equivalent:

(i) G is generating.
(i i) ‖T ‖G = ‖T ‖ for every T ∈ L(X , Z) and every Banach space Z.

(i i i) There is a (non null) Banach space Z such that ‖T ‖G = ‖T ‖ for every rank-one operator
T ∈ L(X , Z).

(iv) BX = conv(att(G, δ)) for every δ > 0.

In particular, if there exists A ⊆ BX which satisfies aconv(A) = BX and A ⊆ att(G, δ) for
every δ > 0, then G is generating.

In the next list we give the first easy examples of generating operators.

Examples 1 (1) The identity operator on every Banach space is generating.
(2) Actually, all isometric embeddings are generating.
(3) Spear operators are generating since, in this case, vG(T ) = ‖T ‖ for every T ∈ L(X , Y ).
(4) Actually, operators with the alternative Daugavet property (i.e. those G ∈ L(X , Y ) such

that vG(T ) = ‖T ‖ for every T ∈ L(X , Y ) with rank-one, cf. [9, Section 3.2]) are also
generating by using Corollary 1 with Z = Y in item (iii).

(5) The natural embedding G of �1 into c0 is a generating operator.
Indeed, for every δ > 0, we have that

att(G, δ) = {x ∈ S�1 : ‖Gx‖∞ > 1 − δ
} ⊃ T{en : n ∈ N},

so conv(att(G, δ)) = B�1 .
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(6) The natural embedding G of L∞[0, 1] into L1[0, 1] is a generating operator.
Indeed, for every δ > 0, notice that BL∞[0,1] = conv ({ f ∈ L∞[0, 1] : | f (t)| = 1 a.e.})
(this should be well known, but in any case it follows from Lemma 4 which includes the
vector-valued case). Observe then that, for every f ∈ L∞[0, 1] satisfying | f (t)| = 1
a.e., it follows ‖ f ‖∞ = ‖G( f )‖1 = 1. So f ∈ att(G, δ).

We will provide some more examples in classical Banach spaces in Subsection 2.2.
The next result deals with compact operators defined on a reflexive Banach space.

Proposition 2 Let X be a reflexive Banach space, let Y be a Banach space, and let G ∈
L(X , Y ) be a compact operator with ‖G‖ = 1. Then,

⋂
δ>0

conv(att(G, δ)) = conv(att(G)).

Consequently, G is r-generating if and only if r BX ⊆ conv(att(G)).

Proof Let x0 ∈ ⋂δ>0 conv(att(G, δ)) and suppose that x0 /∈ conv(att(G)). Then there exist
x∗
0 ∈ X∗ and α > 0 such that

sup
x∈conv(att(G))

Re x∗
0 (x) < α ≤ Re x∗

0 (x0). (3)

Fix ε > 0. Given n ∈ N, since x0 ∈ conv
(
att
(
G, 1

n

))
, we may find m ∈ N, y1, . . . , ym ∈

att
(
G, 1

n

)
, and λ1, . . . , λm ∈ [0, 1] with∑m

k=1 λk = 1 such that
∥∥∥∥∥x0 −

m∑
k=1

λk yk

∥∥∥∥∥ < ε,

hence

α − ε ≤ Re x∗
0 (x0) − ε <

m∑
k=1

λk Re x∗
0 (yk).

By convexity, there is k0 ∈ {1, . . . , m} such that Re x∗
0 (yk0) ≥ α−ε. Repeating this argument

for each n ∈ N, we obtain a sequence {yn} in BX such that Re x∗
0 (yn) > α − ε and ‖Gyn‖ >

1− 1
n for every n ∈ N. Now, using that BX is weakly compact by Dieudonné’s theorem, we

obtain a subsequence {yσ(n)} of {yn} which is weakly convergent to some y0 ∈ BX . Then,
by the arbitrariness of ε and the compactness of G we have that

Re x∗
0 (y0) ≥ α and ‖Gy0‖ = 1,

which contradicts (3). ��
The next result characterizes those operators acting from a finite-dimensional space which

are r -generating for some 0 < r ≤ 1.

Proposition 3 Let X be a Banach space with dim(X) = n, let Y be a Banach space, and let
G ∈ L(X , Y ) with ‖G‖ = 1. The following are equivalent:

(i) G is r-generating for some r ∈ (0, 1].
(i i) The set att(G) contains n linearly independent elements.
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Proof (i) ⇒ (i i). By Proposition 2, we have that r BX ⊆ conv(att(G)). Therefore, att(G)

contains n linearly independent elements.
(i i) ⇒ (i).We start proving that the set conv(att(G)) is absorbing. Indeed, let {x1, . . . , xn}

be a linearly independent subset of att(G). Then, fixed 0 	= x ∈ X , there are λ1, . . . , λn ∈ K

such that x =∑n
j=1 λ j x j . Calling 0 < ρ =∑n

j=1 |λ j | we can write

x =
n∑

k=1

λ j x j =
∑
λ j 	=0

|λ j | λ j

|λ j | x j = ρ
∑
λ j 	=0

|λ j |
ρ

λ j

|λ j | x j ∈ ρ conv(att(G))

where we used that
λ j
|λ j | x j ∈ att(G) as this set is balanced. Hence, the set conv(att(G)) is

absorbing. Besides, conv(att(G)) is clearly balanced, convex, and compact. So itsMinkowski
functional defines a norm on X which must be equivalent to the original one. Then, there is
r > 0 such that r BX ⊆ conv(att(G)) and, therefore, G is r -generating by Proposition 2. ��

We next would like to present the relationship of generating operators with denting points
(and so with the Radon-Nikodým property). We need some notation. Let A be a bounded
closed convex set. Recall that x0 ∈ A is a denting point if for every δ > 0 x0 /∈ conv(A \
B(x0, δ)) or, equivalently, if x0 belongs to slices of BX of arbitrarily small diameter. We
write dent(A) to denote the set of denting points of A. A closed convex subset C of X has the
Radon-Nikodým property (RNP in short), if all of its closed convex bounded subsets contain
denting points or, equivalently, if all of its closed convex bounded subsets are equal to the
closed convex hull of their denting points. In particular, the whole space X may also have
this property.

Lemma 1 Let X, Y be Banach spaces and let G ∈ L(X , Y ) be a (norm-one) generating
operator. If x0 ∈ dent(BX ), then ‖Gx0‖ = 1.

Proof Given δ > 0, observe that x0 ∈ att(G, δ). Otherwise, there would exist r > 0 such
that B(x0, r) ∩ att(G, δ) = ∅, so att(G, δ) ⊆ BX\B(x0, r) and, by Corollary 1,

x0 ∈ BX = conv(att(G, δ)) ⊆ conv(BX \ B(x0, r))

which contradicts x0 being a denting point of BX . Consequently, ‖Gx0‖ ≥ 1 − δ and the
arbitrariness of δ finishes the proof. ��

The above result can be slightly improved by using the following definition.

Definition 4 Let x0 ∈ SX . We say that x0 is a point of sliced fragmentability if for every
δ > 0 there is a slice Sδ of BX such that Sδ ⊂ x0 + δBX .

Observe that this notion is weaker than that of denting point (for instance, points in the
closure of the set of denting points are of sliced fragmentability but they do not need to be
denting, even in the finite-dimensional case).

Lemma 2 Let X, Y be Banach spaces, let G ∈ SL(X ,Y ) be a generating operator, and let
x0 ∈ SX be a point of sliced fragmentability, then ‖Gx0‖ = 1.

Proof By our assumption and Corollary 1, conv(att(G, δ)) = BX for every δ > 0. This
implies that, fixed δ > 0, the set att(G, δ) intersects every slice of BX . Applying this to the
slice Sδ from Definition 4, we obtain that there is a point xδ ∈ Sδ ∩ att(G, δ). For this xδ , we
have ‖x0 − xδ‖ < δ and ‖Gxδ‖ > 1 − δ. Consequently,

‖Gx0‖ ≥ ‖Gxδ‖ − ‖G(x0 − xδ)‖ ≥ 1 − 2δ

and the arbitrariness of δ finishes the proof. ��
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Wedonot know if Lemma2 is a characterization, but in Proposition 10wewill characterize
those points on which every generating operator attains its norm.

Proposition 4 Let X, Y be Banach spaces and let G ∈ L(X , Y ) be a norm-one operator.
Suppose that BX = conv(dent(BX )). Then, G is generating if and only if ‖Gx‖ = 1 for
every x ∈ dent(BX ).

Proof If ‖Gx‖ = 1 for every x ∈ dent(BX ), then dent(BX ) ⊂ att(G, δ) for every δ > 0
and, therefore, G is generating by Corollary 1.iv as BX = conv(dent(BX )). The converse
implication follows from Lemma 1. ��

Corollary 2 Let X, Y be Banach spaces and let G ∈ L(X , Y )be a norm-one operator. Suppose
that X has the Radon-Nikodým property. Then, G is generating if and only if ‖Gx‖ = 1 for
every x ∈ dent(BX ).

In the finite-dimensional case, the RNP is for free and denting points and extreme points
coincide. Therefore, the following particular case holds.

Corollary 3 Let X be a finite-dimensional space, let Y be a Banach space, and let G ∈
L(X , Y ) be a norm-one operator. Then, G is generating if and only if ‖Gx‖ = 1 for every
x ∈ ext(BX ).

When every point of the unit sphere of the domain is a denting point, Proposition 4 tells
us that generating operators are isometric embeddings. Spaces with such property of the unit
sphere are average locally uniformly rotund (ALUR for short) spaces. They were introduced
in [22] and it can be deduced from the main theorem of [14] that a Banach space is ALUR
if and only if every point of the unit sphere is a denting point.

Corollary 4 Let X, Y be Banach spaces and suppose that X is ALUR. Then, every generating
operator G ∈ L(X , Y ) is an isometric embedding.

The next result gives another useful characterization of r -generating operators.

Theorem 1 Let X, Y be Banach spaces, let G ∈ L(X , Y ) be a norm-one operator, let
r ∈ (0, 1], and let A ⊂ BY ∗ such that aconvw∗

(A) = BY ∗ . Then, G is r-generating if and
only if max

θ∈T sup
y∗∈A

‖G∗(y∗) + θx∗‖ ≥ 1 + r‖x∗‖ for every x∗ ∈ X∗.

Proof If G is r -generating, fixed x∗ ∈ X∗ and δ > 0, we can write

max
θ∈T sup

y∗∈A
‖G∗(y∗) + θx∗‖ = max

θ∈T sup
y∗∈A

sup
x∈BX

|(G∗y∗)(x) + θx∗(x)|

= sup
x∈BX

sup
y∗∈A

(|y∗(Gx)| + |x∗(x)|)

= sup
x∈BX

(‖Gx‖ + |x∗(x)|) ≥ sup
x∈att(G,δ)

(‖Gx‖ + |x∗(x)|)

≥ sup
x∈att(G,δ)

(1 − δ + |x∗(x)|) ≥ 1 − δ + r‖x∗‖

where the last inequality holds by Proposition 1. The arbitrariness of δ gives the desired
inequality.
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To prove the converse, fixed x∗ ∈ SX∗ and δ > 0, it suffices to show that ‖x∗‖G,δ ≥ r by
Proposition 1. We use the hypothesis for δ

2 x∗ to get that

max
θ∈T sup

y∗∈A

∥∥∥∥G∗(y∗) + θ
δ

2
x∗
∥∥∥∥ ≥ 1 + r

δ

2
.

So, given 0 < ε < δ
2 , there are y∗ ∈ A, θ ∈ T, and x ∈ BX such that

‖Gx‖ + δ

2
|x∗(x)| ≥

∣∣∣∣y∗(Gx) + θ
δ

2
x∗(x)

∣∣∣∣ > 1 + r
δ

2
− ε

which implies that

δ

2
|x∗(x)| > r

δ

2
− ε and ‖Gx‖ > 1 + (r − 1)

δ

2
− ε ≥ 1 − δ.

The arbitrariness of ε gives ‖x∗‖G,δ ≥ r as desired. ��
Of course, one can always use A = BY ∗ in Theorem 1 if no other interesting choice for

A is available and still one obtains a useful characterization of r -generating operators.
In the case of generating operators, we emphasize the following result.

Corollary 5 Let X, Y be Banach spaces, let A ⊂ BY ∗ be one-norming for Y , and let G ∈
L(X , Y ) with ‖G‖ = 1. Then, the following are equivalent:

(i) G is generating.
(i i) G∗(BY ∗) is a spear set of X∗.

(i i i) G∗(A) is a spear set of X∗.
(iv) max

θ∈T sup
y∗∈BY∗

‖G∗(y∗) + θx∗‖ = 2 for every x∗ ∈ SX∗ .

Only item (iv) is new, and follows immediately from the following remark.

Remark 1 Let Z be a Banach space and F ⊂ BZ . Then, F is a spear set if and only if
max
θ∈T sup

z∈F
‖z + θ z0‖ = 2 for every z0 ∈ SZ .

Indeed, to prove the sufficiency, fixed 0 	= z1 ∈ Z , observe that

max
θ∈T sup

z∈F

∥∥∥∥z + θ
z1

‖z1‖
∥∥∥∥ = 2

implies that max
θ∈T sup

z∈F

∥∥‖z1‖z + θ z1
∥∥ = 2‖z1‖. So, if ‖z1‖ ≥ 1, the triangle inequality allows

to write

max
θ∈T sup

z∈F
‖z + θ z1‖ ≥ max

θ∈T sup
z∈F

∥∥‖z1‖z + θ z1
∥∥− (‖z1‖ − 1) = 1 + ‖z1‖.

If otherwise ‖z1‖ < 1, just observe that

max
θ∈T sup

z∈F
‖z + θ z1‖ ≥ max

θ∈T sup
z∈F

∥∥∥∥z + θ
z1

‖z1‖
∥∥∥∥− (1 − ‖z1‖) = 1 + ‖z1‖.

��
What we have shown is that it suffices to use elements x∗ ∈ SX∗ in Theorem 1 when

r = 1. However, the following example shows that this is not the case for any other value of
0 < r < 1.
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Example 1 Let 0 < r < 1 be fixed, let X be the real two-dimensional Hilbert space, {e1, e2}
be its orthonormal basis with {e∗

1, e∗
2} being the corresponding coordinate functionals. The

norm-one operator G ∈ L(X) given by G = r Id+(1 − r)e∗
1 ⊗ e1 is not r -generating but

satisfies

max
θ∈T sup

x∗∈BX∗
‖G∗(x∗) + θx∗‖ ≥ 1 + r‖x∗‖

for every x∗ ∈ SX∗ .
Indeed, it is clear that ‖G‖ = 1 and G∗ = r Id+(1 − r)e1 ⊗ e∗

1. So, given x∗ ∈ SX∗ , we
have that

max
θ∈T sup

x∗∈BX∗
‖G∗(x∗) + θx∗‖ ≥ ‖G∗(x∗) + x∗‖ = ‖(1 + r)x∗ + (1 − r)x∗(e1)e∗

1‖

= ‖2x∗(e1)e∗
1 + (1 + r)x∗(e2)e∗

2‖ ≥ 1 + r .

Observe that G attains its norm only at±e1 so Proposition 3 tells us that G is not r -generating
(in fact, it is not s-generating for any 0 < s ≤ 1).

If we are able to guarantee that G∗(BY ∗) is a spear set of X∗, Corollary 5 shows that G is
generating. The most naive way to do so is to require G∗(BY ∗) = BX∗ but observe that, as
‖G∗‖ = 1, this implies that G∗ is surjective and G is an isometry.

The other extreme possibility is G∗(BY ∗) = {λx∗
0 : λ ∈ K, |λ| ≤ 1} for some x∗

0 ∈ SX∗ .
This obviously means that G is a rank one operator; in this case, G∗(BY ∗) is a spear set of X∗
if and only if x∗

0 is a spear vector of X∗. In this particular case, Corollary 5 reads as follows.

Corollary 6 Let X, Y be Banach spaces, x∗
0 ∈ SX∗ , and y0 ∈ SY . Then, the rank-one operator

G = x∗
0 ⊗ y0 is generating if and only if x∗

0 ∈ Spear(X∗).

Observe the similarity with [9, Corollary 5.9] which states that G = x∗
0 ⊗ y0 is spear if

and only if x∗
0 is a spear functional and y0 is a spear vector. Here the condition is easier to

satisfy, of course.

2.1 Some stability results

The following result shows that the property of being generating is stable by c0-, �1-, and
�∞-sums of Banach spaces.

Proposition 5 Let {Xλ : λ ∈ �}, {Yλ : λ ∈ �} be two families of Banach spaces and let
Gλ ∈ L(Xλ, Yλ) be a norm-one operator for every λ ∈ �. Let E be one of the Banach
spaces c0, �∞, or �1, let X = [⊕λ∈� Xλ

]
E and Y = [⊕λ∈� Yλ

]
E , and define the operator

G : X −→ Y by

G [(xλ)λ∈�] = (Gλxλ)λ∈�

for every (xλ)λ∈� ∈ [⊕λ∈� Xλ

]
E . Then, G is generating if and only if Gλ is generating for

every λ ∈ �.

Proof Suppose first that G is generating and, fixed κ ∈ �, let us show that Gκ is generating.

Observe that callingW =
[⊕

λ	=κ Xλ

]
E
and Z =

[⊕
λ	=κ Yλ

]
E
,we canwrite X = Xκ⊕∞W

and Y = Yκ ⊕∞ Z when E is �∞ or c0 and X = Xκ ⊕1 W and Y = Yκ ⊕1 Z when E is �1.
Given Tκ ∈ L(Xκ , Yκ ), define T ∈ L(X , Y ) by

T (xκ , w) = (Tκ xκ , 0) (xκ ∈ Xκ , w ∈ W )
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which satisfies ‖T ‖ = ‖Tκ‖ and ‖T ‖G = ‖T ‖ as G is generating. Moreover,

‖T ‖G = inf
δ>0

sup{‖T (xκ , w)‖: (xκ , w) ∈ att(G, δ)}
= inf

δ>0
sup{‖Tκ xκ‖: xκ ∈ att(Gκ , δ)} = ‖Tκ‖Gκ ,

thus ‖Tκ‖ = ‖Tκ‖Gκ . The arbitrariness of Tκ gives that Gκ is generating.
To prove the sufficiency when E is c0 or �∞, given T ∈ L(X , Y ), it is enough to show

that ‖T ‖G ≥ ‖T ‖. Fixed ε > 0, we may find κ ∈ � such that ‖Pκ T ‖ > ‖T ‖ − ε,
where Pκ denotes the projection from Y onto Yκ . Now, writing X = Xκ ⊕∞ W where

W =
[⊕

λ	=κ Xλ

]
E
, we have that BX = conv

(
SXκ × SW

)
and so we may find x0 ∈ SXκ

and w0 ∈ SW such that

‖Pκ T (x0, w0)‖ > ‖T ‖ − ε.

Take x∗
0 ∈ SXκ

∗ with x∗
0 (x0) = 1 and define the operator S ∈ L(Xκ , Yκ ) by

S(x) = Pκ T (x, x∗
0 (x)w0) (x ∈ Xκ )

which satisfies ‖S‖ ≥ ‖Sx0‖ = ‖Pκ T (x0, w0)‖ > ‖T ‖ − ε and ‖S‖Gκ = ‖S‖ since Gκ is
generating. Moreover, fixed δ > 0,

‖T ‖G,δ = sup{‖T x‖: x ∈ SX , ‖Gx‖ > 1 − δ}
≥ sup{‖T (x, x∗

0 (x)w0)‖: x ∈ Xκ , (x, x∗
0 (x)w0) ∈ SX , ‖G(x, x∗

0 (x)w0)‖ > 1 − δ}
≥ sup{‖Pκ T (x, x∗

0 (x)w0)‖: x ∈ SXκ , ‖Gκ x‖ > 1 − δ} = ‖S‖Gκ ,δ.

Therefore, ‖T ‖G ≥ ‖S‖Gκ = ‖S‖ > ‖T ‖ − ε and the arbitrariness of ε gives that ‖T ‖G ≥
‖T ‖ as desired.

In the case when E = �1, fixed δ > 0, consider the set

Aδ :=
⋃
λ∈�

{x ∈ X : xλ ∈ att(Gλ, δ), xκ = 0 if κ 	= λ} ,

which satisfies that Aδ ⊆ att(G, δ) and

conv(Aδ) ⊇
⋃
λ∈�

conv ({x ∈ X : xλ ∈ att(Gλ, δ), xκ = 0 if κ 	= λ})

=
⋃
λ∈�

{
x ∈ X : xλ ∈ BXλ , xκ = 0 if κ 	= λ

}
,

where in the last equality we have used Corollary 1.iv as Gλ is generating for every λ ∈
�. Therefore, BX = conv

(⋃
λ∈�

{
x ∈ X : xλ ∈ BXλ , xκ = 0 if κ 	= λ

}) ⊆ conv(Aδ) ⊆
conv(att(G, δ)) and the arbitrariness of δ gives that G is generating by Corollary 1.iv. ��

We next discuss the relationship of being generating with the operation of taking the
adjoint.

Proposition 6 Let X, Y be Banach spaces, let G ∈ L(X , Y ) be a norm-one operator, and let
r ∈ (0, 1]. If G∗∗ is r-generating, then G is also r-generating.

Proof Fixed x∗
0 ∈ SX∗ , we have that ‖JX∗(x∗

0 )‖G∗∗,δ ≥ r‖x∗
0‖ for every δ > 0 by Proposi-

tion 1. So, fixed δ > 0 and ε > 0, there exists x∗∗ ∈ att(G∗∗, δ) with |x∗∗(x∗
0 )| > (1 − ε)r .
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Now, as ‖G∗∗x∗∗‖ > 1−δ, there is y∗ ∈ SX∗ satisfying |x∗∗(G∗y∗)| > 1−δ. ByGoldstine’s
theorem there is x ∈ BX such that

|x∗
0 (x)| = |JX (x)(x∗

0 )| > (1 − ε)r and ‖Gx‖ ≥ |y∗(Gx)| = |JX (x)(G∗y∗)| > 1 − δ

which gives ‖x∗
0‖G,δ ≥ r since ε > 0 was arbitrary. So G is r -generating by Proposition 1.

��
We do not know if the converse of the above result holds in general, not even for r = 1. On

the other hand, the following example shows that there is no good behaviour of the property
of being generating with respect to taking one adjoint, as the property does not pass from an
operator to its adjoint, nor the other way around.

Example 2 Consider the norm-one operator G : c0 −→ c0 defined by

Gx =
∞∑

n=1

1

n
x(n)en (x ∈ c0).

For any x ∈ Sc0 with x(1) ∈ T we have that ‖G(x)‖ = 1 and, consequently, x ∈ att(G, δ)

for every δ > 0. Since such elements are enough to recover the whole unit ball of c0 by
taking closed convex hull, G is generating by Corollary 1.iv.

• The adjoint operator G∗ : �1 −→ �1

G∗(x∗) =
∞∑

n=1

1

n
x∗(n)e∗

n (x∗ ∈ �1)

is not generating by Corollary 2 since ‖G∗(e∗
n)‖ = 1

n < 1 for n > 1.
• The second adjoint G∗∗ : �∞ −→ �∞

G∗∗(x∗∗) =
∞∑

n=1

1

n
x∗∗(n)e∗∗

n (x∗∗ ∈ �∞)

is again generating following an analogous argument to the one used for G, using this
time elements x ∈ S�∞ with x(1) ∈ T.

2.2 Some examples in classical Banach spaces

Our aim here is to provide some characterizations of generating operators when the domain
space is L1(μ) or the range space is C0(L) by making use of Corollary 5.

2.2.1 Operators acting from L1(�)

Let Y be a Banach space and let (�,�,μ) be a finite measure space. Recall that an operator
T ∈ L(L1(μ), Y ) is representable if there exists g ∈ L∞(μ, Y ) such that

T ( f ) =
∫

�

f (t)g(t) dμ(t) ( f ∈ L1(μ)).

In such case, ‖T ‖ = ‖g‖∞. Moreover, its adjoint T ∗ : Y ∗ → L∞(μ) is given by

[T ∗(y∗)]( f ) = y∗(T ( f )) =
∫

�

f (t)y∗(g(t)) dμ(t) ( f ∈ L1(μ), y∗ ∈ Y ∗),
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then T ∗(y∗) = y∗ ◦ g ∈ L∞(μ) for y∗ ∈ Y ∗.
Weakly compact operators are representable (see [5, p. 65, Theorem 12], for instance). If Y

has the RNP, then every operator in L(L1(μ), Y ) is representable (see [5, p. 63, Theorem 5],
for instance) and so L(L1(μ), Y ) identifies with L∞(μ, Y ) in this case.

The question of which operators acting from L1(μ) are generating leads to study the spear
sets in L∞(μ). We do so in the next result which is valid for arbitrary measures.

Proposition 7 (Spear sets in BL∞(μ)) Let (�,�,μ) be a positive measure space and let
F ⊂ BL∞(μ). Then, the following are equivalent:

(i) F is a spear set.
(i i) For every measurable set A ∈ � with μ(A) 	= 0 and every ε > 0 there exists B ∈ �,

B ⊂ A with μ(B) 	= 0 and f ∈ F such that | f (t)| > 1 − ε for every t ∈ B.

Proof Suppose first that F is a spear set. Given A ∈ � with μ(A) 	= 0 and ε > 0, since

max
θ∈T sup

f ∈F
‖ f + θ1A‖∞ = 2,

there exists f0 ∈ F and θ0 ∈ T such that ‖ f0+θ01A‖∞ > 2−ε and thus, there exists B ⊂ A
with μ(B) 	= 0 such that | f0(t)| > 1− ε for every t ∈ B. To prove the converse implication,
given x ∈ L∞(μ) and ε > 0, there is A ∈ � with μ(A) 	= 0 such that |x(t)| ≥ ‖x‖∞ − ε

for every t ∈ A. By the hypothesis, there is a subset B of A with μ(B) 	= 0 and f0 ∈ F
such that | f0(t)| > 1 − ε for every t ∈ B. Now, thanks to the compactness of T we can
fix an ε-net Tε of T, then we may find θ0 ∈ Tε and C ⊂ B with μ(C) 	= 0 such that
| f0(t) + θ0x(t)| ≥ | f0(t)| + |x(t)|(1 − ε) for every t ∈ C . Therefore,

max
θ∈T sup

f ∈F
‖ f + θx‖∞ ≥ max

θ∈T ‖ f0 + θx‖∞

≥ inf
t∈C

| f0(t) + θx(t)| ≥ inf
t∈C

| f0(t)| + |x(t)|(1 − ε)

≥ 1 − ε + (‖x‖∞ − ε)(1 − ε),

and the arbitrariness of ε gives maxθ∈T sup f ∈F ‖ f + θx‖∞ ≥ 1 + ‖x‖∞. ��

As an immediate consequence we get the following characterization of generating repre-
sentable operators acting on L1(μ).

Corollary 7 Let Y be a Banach space, let (�,�,μ) be a finite measure space, and let G ∈
L(L1(μ), Y ) be a norm-one operator which is representable by g ∈ L∞(μ, Y ). Then, the
following are equivalent:

(i) G is generating.
(i i) {y∗ ◦ g : y∗ ∈ BY ∗ } is a spear set of BL∞(μ).

(i i i) For every measurable set A ⊂ � with μ(A) > 0 and every ε > 0 there exists B ⊂ A
with μ(B) > 0 such that ‖g(t)‖ > 1 − ε for all t ∈ B.

(iv) ‖g(t)‖ = 1 μ-almost everywhere.

Remark 2 The restriction on the measureμ being finite in Corollary 7 can be relaxed to being
σ -finite.

Indeed, given a σ -finite measure μ, there is a suitable probability measure ν such that
L1(μ) ≡ L1(ν) and L∞(μ, Y ) ≡ L∞(ν, Y ), see [4, Proposition 1.6.1] for instance.
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Compare Corollary 7 with [9, Corollary 4.22] which says that G ∈ L(L1(μ), Y ) of norm-
one which is representable by g ∈ L∞(μ, Y ) is a spear operator if and only if it has the
alternative Daugavet property if and only if g(t) ∈ Spear(Y ) for a.e. t ∈ �. It is then easy to
construct generating operators from L1(μ) which do not have the alternative Daugavet prop-

erty: for instance, G ∈ L(L1[0, 1], �22) given by G( f ) =
∫ 1

0
f (t)(cos(2π t), sin(2π t)) dt

for every f ∈ L1[0, 1].

2.2.2 Operators arriving to C0(L)

Let L be a Hausdorff locally compact topological space. It is immediate from the definition
of the norm, that the set A = {δt : t ∈ L} ⊂ C0(L)∗ is one-norming for C0(L). Hence,
Corollary 5 reads in this case as follows.

Proposition 8 Let X be a Banach space, let L be a Hausdorff locally compact topological
space, and let G ∈ L(X , C0(L)) be a norm-one operator. Then, the following are equivalent:

(i) G is generating.
(i i) The set {G∗(δt ) : t ∈ L} is a spear set of X∗.

We would like to compare the above result with [9, Proposition 4.2] where it is proved
that G ∈ L(X , C0(L)) has the alternative Daugavet property if and only if {G∗(δt ) : t ∈ U }
is a spear set of X∗ for every open subset U ⊂ L . It is then easy to construct examples of
generating operators arriving to C0(L) spaces which do not have the alternative Daugavet
property. For instance, consider G ∈ L(c0, c0) given by

[Gx](n) =
{
0 if n is odd,

x(n) if n is even.

3 Generating operators and norm-attainment

Wediscuss herewhen generating operators are norm-attaining. On the one hand, it is shown in
[9, Theorem 2.9] that every spear x∗ ∈ X∗ attains its norm. So rank-one generating operators
also attain their norm by Corollary 6.

Corollary 8 Let X, Y be Banach spaces and G ∈ Gen(X , Y ) of rank-one. Then, G attains
its norm.

Besides, if BX contains denting points, all generating operators with domain X are norm
attaining by Lemma 1.

On the other hand, operators with the alternative Daugavet property are generating (see
Example 1.(4)), and there are operators with the alternative Daugavet property which do not
attain their norm (see [9, Example 8.7]). The construction of the cited example in [9] is not
easy at all, but we may construct easier examples of generating operators which do not attain
their norm, even with rank two.

Example 3 Consider g : [0, 1] −→ �22 given by g(t) = (cos t, sin t) and the norm-one oper-
ator G ∈ L(L1[0, 1], �22) represented by g:

G(x) =
∫ 1

0
x(t)g(t) dt (x ∈ L1[0, 1]).
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Then, G is generating but does not attain its norm.

Proof Observe that G is generating by Corollary 7 as ‖g(t)‖ = 1 for every t ∈ [0, 1]. To
prove that G does not attain its norm, recall that for an integrable complex-valued function f

the equality
∣∣∣∫ 10 f (t)dt

∣∣∣ = ∫ 10 | f (t)|dt holds if and only if there is λ ∈ T such that f = λ| f |
except for a set of zero measure. Suppose, to find a contradiction, that there is a non-zero
x ∈ L1[0, 1] satisfying ‖Gx‖ = ‖x‖. Then, as xg can be seen as a complex-valued function
and we can identify the norm on �22 with the modulus in C, we have that

∣∣∣∣
∫ 1

0
x(t)g(t)dt

∣∣∣∣ =
∥∥∥∥
∫ 1

0
x(t)g(t)dt

∥∥∥∥
= ‖Gx‖ = ‖x‖ =

∫ 1

0
|x(t)|dt =

∫ 1

0
|x(t)g(t)|dt .

Therefore, there is λ ∈ T such that xg = λ|xg| = λ|x | except for a set of zero measure.
But this is impossible since x takes real values and g covers a non-trivial arc of the unit
circumference. ��

Example 3 can be generalized for other two-dimensional spaces Y , but we need some
assumptions on the shape of SY . If SY can be expressed as a finite or countable union of
segments, then every generating operator G ∈ L(L1[0, 1], Y ) attains its norm, leading to a
complete characterization.

Proposition 9 Let Y be a real two-dimensional space. Then, the following are equivalent:

(i) SY is a finite or countable union of segments.
(i i) Every generating operator G ∈ L(L1[0, 1], Y ) attains its norm.

Moreover, if the previous assertions hold, we have that BL1[0,1] = conv(att(G)) for every
generating operator G ∈ L(L1[0, 1], Y ).

Proof (i) ⇒ (i i) Let G ∈ L(L1[0, 1], Y ) be a generating operator. Since Y has dimension
two, G can be represented by

G(x) =
∫ 1

0
x(t)g(t) dt (x ∈ L1[0, 1])

for a suitable g ∈ L∞([0, 1], Y ) with ‖g‖∞ = 1 and ‖g(t)‖ = 1 almost everywhere by
Corollary 7. Since SY is a finite or countable union of segments, we may find a partition π

of [0, 1] in measurable subsets of positive measure such that g(A) is contained in a segment
of SY almost everywhere for every A ∈ π . Then, for every � ∈ π and every measurable
subset A ⊂ � of positive measure, consider xA = 1

|A|1A ∈ SL1[0,1], where |A| denotes the
Lebesgue measure of A, and let us show that G attains its norm at xA. Indeed, as g(A) is
contained in a segment of SY a.e., there exists y∗ ∈ SY ∗ such that y∗(g(t)) = 1 a.e. in A,
thus

‖G(xA)‖ ≥ y∗(GxA) = y∗
(∫ 1

0

1

|A|1A(t)g(t) dt

)
= 1

|A|
∫

A
y∗(g(t)) dt = 1,

and so ‖G(xA)‖ = 1 as desired.
Moreover, for this π

BL1[0,1] ⊆ aconv

({
1

|A|1A : A ⊂ �,� ∈ π, |A| > 0

})
⊆ conv(att(G)),
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hence BL1[0,1] = conv(att(G)).
To prove (i i) ⇒ (i), suppose that SY cannot be written as a finite or countable union

of segments and let us construct a generating operator G ∈ L(L1[0, 1], Y ) not attaining its
norm. Observe that the number of open maximal segments in SY is finite or countable as SY

is a curve on a two-dimensional space with finite length. Let�n , n ∈ N, be the open maximal
segments in SY and denote D = SY \ (∪n∈N�n). Clearly, D is an uncountablemetric compact
subset of SY , hence it contains a homeomorphic copy of the Cantor set K [12, Chapter I]
and so there exists an injective continuous function ϕ : K −→ D. Now, let us construct an
injection from [0, 1] to K . To do so, recall that the Cantor set is the set of numbers of [0, 1]
that have a triadic representation consisting purely of 0’s and 2’s, that is,

K =
{

y ∈ [0, 1] : y =
∞∑

k=1

βk

3k
, βk = 0, 2

}
.

Every t ∈ [0, 1] has a dyadic representation:

t =
∞∑

k=1

αk(t)

2k
,

where αk(t) ∈ {0, 1}. This representation is unique except for a countable subset of [0, 1]
consisting of those numbers with finite dyadic representation. Consider φ : [0, 1] −→ K
given by

φ(t) =
∞∑

k=1

2αk(t)

3k
(t ∈ [0, 1]),

where αk(t) ∈ {0, 1} are the coefficients in the dyadic representation of t . The function φ

is well-defined almost everywhere on [0, 1], injective, measurable, and its image lies on K .
Then, the function g = ϕ ◦ φ : [0, 1] −→ D is well-defined almost everywhere on [0, 1],
g ∈ L∞[0, 1], and it is injective. Consider the operator G : L1[0, 1] −→ Y defined by

G(x) =
∫ 1

0
x(t)g(t) dt (x ∈ L1[0, 1]).

G is generating by Corollary 7 as ‖g(t)‖ = 1 almost everywhere but it does not attain its
norm. Indeed, suppose on the contrary that there is a non-zero x ∈ L1[0, 1] such that

‖G(x)‖ =
∥∥∥∥
∫ 1

0
x(t)g(t) dt

∥∥∥∥ =
∫ 1

0
|x(t)| dt = ‖x‖.

We may find y∗
0 ∈ SY ∗ such that

∫ 1

0
|x(t)| dt =

∥∥∥∥
∫ 1

0
x(t)g(t) dt

∥∥∥∥ = y∗
0

(∫ 1

0
x(t)g(t) dt

)
=
∫ 1

0
x(t)y∗

0 (g(t)) dt .

This equality implies the existence of a measurable subset A of [0, 1] with positive measure
such that |x(t)| = x(t)y∗

0 (g(t)) for every t ∈ A, thus y∗
0 (g(t)) ∈ {1,−1} for every t ∈ A.

Note that g(A) ⊆ {y ∈ D : y∗
0 (y) ∈ {1,−1}}. However, this leads to a contradiction. On the

one hand, the latter set has at most four elements as D does not contain open segments of
SY . On the other hand, since g is injective and A has positive measure, g(A) has infinitely
many elements. Thus, G cannot attain its norm. ��
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The next example shows that, even in the case of norm-attaining operators, the set att(G)

cannot be used to characterize when G is generating with the exception of the case when X
is reflexive and G is compact covered by Proposition 2.

Example 4 Let G ∈ L(X , Y ) be a generating operator between two Banach spaces X and Y
such that it does not attain its norm. Then, the operator G̃ : X ⊕1 K −→ Y ⊕1 K defined by
G̃(x, λ) = (Gx, λ) is generating by Proposition 5 and attains its norm, but conv(att(G̃)) =
conv({(0, λ) : λ ∈ T}) = {(0, λ) : λ ∈ BK} does not contain any ball of X ⊕1 K.

The following result characterizes the possibility to construct a generating operator not
attaining its norm acting from a given Banach space which somehow extends Example 3.

Theorem 2 Let X be a Banach space, the following are equivalent:

(i) There exists a Banach space Y and a norm-one operator G ∈ L(X , Y ) such that G is
generating but att(G) = ∅.

(i i) There exists a spear set B ⊆ BX∗ such that sup
x∗∈B

|x∗(x)| < 1 for every x ∈ SX .

Proof (i) ⇒ (i i) Taking B = G∗(BY ∗), since G is generating, we can use Corollary 5 to
deduce that B is a spear set. Besides, as G does not attain its norm, we have that

1 > ‖G(x)‖ = sup
y∗∈BY∗

|y∗(Gx)| = sup
y∗∈BY∗

|(G∗y∗)(x)| = sup
x∗∈B

|x∗(x)|

for every x ∈ SX .
(i i) ⇒ (i) Consider Y = �∞(B) and G : X −→ �∞(B) defined by

(Gx)(x∗) = x∗(x) (x∗ ∈ X∗, x ∈ X).

On the one hand, for x ∈ SX , we have that

‖G(x)‖ = sup
x∗∈B

|(Gx)(x∗)| = sup
x∗∈B

|x∗(x)| < 1.

On the other hand, using that B is a spear set, for every ε > 0 we may find x∗ ∈ B with
‖x∗‖ > 1 − ε and so

‖G‖ = sup
x∈BX

‖G(x)‖ ≥ sup
x∈BX

|(Gx)(x∗)| = sup
x∈BX

|x∗(x)| = ‖x∗‖ > 1 − ε.

Therefore, ‖G‖ = 1 but the norm is not attained.
To show that G is generating, we start claiming that, for every g ∈ �1(B) ⊂ �∞(B)∗, we

have

G∗(g) =
∑

x∗∈B
g(x∗)x∗ ∈ X∗.

Indeed, given g ∈ �1(B), observe that

g( f ) =
∑

x∗∈B
g(x∗) f (x∗) ( f ∈ �∞(B))

and

[G∗(g)](x) = g(Gx) =
∑

x∗∈B
g(x∗)(Gx)(x∗) =

∑
x∗∈B

g(x∗)x∗(x) (x ∈ X),
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so G∗(g) =∑x∗∈B g(x∗)x∗. Now, fixed x∗
0 ∈ B, define g0 ∈ �1(B) ⊂ �∞(B)∗ by

g0(x∗) =
{
1 if x∗ = x∗

0
0 if x∗ 	= x∗

0

which clearly satisfies G∗(g0) = x∗
0 . Therefore, by the arbitrariness of x∗

0 ∈ B, we get
G∗(B�∞(B)∗) ⊃ B, so G∗(B�∞(B)∗) is a spear set and G is generating by Corollary 5. ��

The above proof, when read pointwise, allows to give a characterization of those points
at which every generating operator attains its norm.

Proposition 10 Let X be a Banach space and x0 ∈ SX . Then, the following are equivalent:

(i) For every Banach space Y and for every generating operator G ∈ SL(X ,Y ) one has
‖Gx0‖ = 1.

(i i) The equality sup
x∗∈B

|x∗(x0)| = 1 holds for every spear set B ⊆ BX∗ .

Proof (i i) ⇒ (i) Given a generating operator G, B = G∗(BY ∗) is a spear set by Corollary 5
so

‖Gx0‖ = sup
y∗∈BY∗

|y∗(Gx0)| = sup
x∗∈B

|x∗(x0)| = 1.

(i) ⇒ (i i) Suppose that (i i) does not hold. Then, there is a spear set B ⊆ BX∗ such that
sup

x∗∈B
|x∗(x0)| < 1. Now, the operator G : X −→ �∞(B) defined by

(Gx)(x∗) = x∗(x) (x∗ ∈ X∗, x ∈ X)

is generating (as shown in the proof of Theorem 2) and satisfies

‖G(x0)‖ = sup
x∗∈B

|(Gx0)(x∗)| = sup
x∗∈B

|x∗(x0)| < 1.

��

4 The set of all generating operators

Our aim here is to study the set Gen(X , Y ) of all generating operators between the Banach
spaces X and Y . Recall, on the one hand, that IdX ∈ Gen(X , X) for every Banach space
X , so Gen(X , X) 	= ∅ for every Banach space X . On the other hand, recall that Corollary 6
shows that Gen(X ,K) = Spear(X∗), so Gen(X ,K) is empty for many Banach spaces X :
those for which Spear(X∗) = ∅ as uniformly smooth spaces, strictly convex spaces, or real
smooth spaces with dimension at least two (see [9, Proposition 2.11]). We will be interested
in finding conditions to ensure that Gen(X , Y ) is non-empty and, in those cases, to study
how big the set Gen(X , Y ) can be. We start with an easy observation on Gen(X , Y ).

Proposition 11 Let X, Y be Banach spaces. Then, Gen(X , Y ) is norm-closed.
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Proof Fixed G0 ∈ Gen(X , Y ) and n ∈ N, there is Gn ∈ Gen(X , Y ) such that ‖G0 − Gn‖ <

1/n and, therefore, ‖G∗
0 − G∗

n‖ < 1/n. Observe now that, for x∗ ∈ X∗, we have

max
θ∈T sup

y∗∈BY∗
‖G∗

0(y∗) + θx∗‖ ≥ max
θ∈T sup

y∗∈BY∗

(
‖G∗

n(y∗) + θx∗‖ − ‖(G∗
0 − G∗

n)(y∗)‖
)

≥ max
θ∈T sup

y∗∈BY∗
‖G∗

n(y∗) + θx∗‖ − ‖G∗
0 − G∗

n‖

> 1 + ‖x∗‖ − 1/n,

where the last inequality holds by Corollary 5 since Gn is generating. Now, it follows again
from Corollary 5 that G0 ∈ Gen(X , Y ). ��

Next, we study the problem of finding out whether Gen(X , Y ) is empty or not for the
Banach spaces X and Y from two points of view: fixing the space Y and fixing the space X .

4.1 Gen(X,Y)when Y is fixed

Proposition 12 For every Banach space Y there is a Banach space X such that Gen(X , Y ) =
∅.

We need the following obstructive result for the existence of generating operators that will
serve to our purpose.

Lemma 3 Let X, Y be Banach spaces and let G ∈ Gen(X , Y ). If the norm of X∗ is Fréchet
differentiable at x∗

0 ∈ SX∗ and x∗
0 is strongly exposed, then x∗

0 ∈ G∗(BY ∗).

Proof Suppose that x∗
0 /∈ G∗(BY ∗) and let α = dist(x∗

0 , G∗(BY ∗)) > 0. Since x∗
0 is strongly

exposed, there are x ∈ SX and δ > 0 satisfying Re x∗
0 (x) = 1 and diam(Slice(BX∗ , x, δ)) <

α. Therefore, we get Re x∗(x) ≤ 1−δ for every x∗ ∈ G∗(BY ∗) and, as G∗(BY ∗) is a balanced
set, we get in fact that

|x∗(x)| ≤ 1 − δ ∀ x∗ ∈ G∗(BY ∗). (4)

By Corollary 5, G∗(BY ∗) is a spear set, so we can find a sequence {x∗
n } in G∗(BY ∗) and a

sequence {θn} in T such that ‖θn x∗
n + x∗

0‖ → 2. Therefore, there is a sequence {xn} in SX

satisfying

Re x∗
0 (xn) → 1 and |x∗

n (xn)| → 1.

Since the norm of X∗ is Fréchet differentiable at x∗
0 ∈ SX∗ , by Šmulian’s test, we have that

‖xn − x‖ → 0. Thus, we get |x∗
n (x)| → 1 which contradicts (4). ��

We are now able to provide the pending proof. For a Banach space X let dens(X) denote
its density character.

Proof of Proposition 12 Take a set � with cardinality greater than dens(Y ∗) and let X =
�2(�). If G ∈ Gen(X , Y ), it follows from Lemma 3 that G∗(Y ∗) = X∗ = �2(�)

since every point in SX∗ is Fréchet differentiable and strongly exposed. Then, dens(X∗) =
dens(G∗(Y ∗)) ≤ dens(Y ∗), which is a contradiction. ��

The above argument is based on the possibility of consideringBanach spaces in the domain
with a very big density character. It is then natural to raise the following question.
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Question 1 Does there exist a Banach space Y with dens(Y ) = � such that Gen(X , Y ) 	= ∅
for every Banach space X satisfying dens(X) ≤ �?

This question is easily solvable for separable spaces. Indeed, the space Y = C[0, 1] con-
tains isometrically every separableBanach space. Since isometric embeddings are generating,
we get the following example.

Example 5 The separable Banach space Y = C[0, 1] satisfies Gen(X , Y ) 	= ∅ for every
separable Banach space X .

The question of whether the same trick works for all density characters is involved and
depends on theAxiomatic Set Theory. On the one hand, assuming CH, �∞/c0 is isometrically
universal for all Banach spaces of density character the continuum [18] but, on the other hand,
it is consistent that no such a universal space exists [21], even a isomorphically universal
space, see [3]. We do not know if there is another way to get positive solutions to Question 1.

4.2 Gen(X,Y)when X is fixed

We start our discussion recalling that, by Corollary 6, a rank-one operator x∗ ⊗ y ∈ G(X , Y )

is generating if and only if x∗ ∈ Spear(X∗). This, together with the fact that Gen(X ,K) =
Spear(X∗), gives the following result.

Corollary 9 Let X be a Banach space. Then,

Gen(X , Y ) 	= ∅ for every Banach space Y ⇐⇒ Spear(X∗) 	= ∅.

For instance, if X has the alternative Daugavet property and BX∗ has w∗-denting points,
then Spear(X∗) 	= ∅ by [9, Proposition 5.1].

Once we know about the existence of Banach spaces for which Gen(X , Y ) 	= ∅ for every
Banach space Y , it is natural to ask about the possible size of the set Gen(X , Y ). Themaximal
possibility is Gen(X , Y ) = SL(X ,Y ), but this forces X to be the scalar field.

Corollary 10 Let X be a Banach space. Then, there exists a Banach space Y such that
Gen(X , Y ) = SL(X ,Y ) if and only if X = K. In this case, Gen(X , Z) = SL(X ,Z) for all
Banach spaces Z.

Proof If X = K then Gen(X , Y ) = SL(X ,Y ) obviously holds for every Banach space Y .
Conversely, suppose that there is a Banach space Y such that Gen(X , Y ) = SL(X ,Y ). So, in
particular, every rank-one operator in SL(X ,Y ) is generating but this means that Spear(X∗) =
SX∗ by Corollary 6. Therefore, X = K by [9, Proposition 2.11.(e)] ��

It is now natural to wonder if there can be enough generating operators to recover the unit
ball of L(X , Y ) by convex (or closed convex) hull. That is, we are looking for Banach spaces
X such that BL(X ,Y ) = conv(Gen(X , Y )) or BL(X ,Y ) = conv(Gen(X , Y )) for every Banach
space Y .

We start our discussion with an observation on lush spaces. Recall that a Banach
spaces X is lush [2] if for every x, y ∈ SX and every ε > 0, there exists y∗ ∈ SX∗
such that y ∈ Slice(BX , y∗, ε) and dist(x, aconv(Slice(BX , y∗, ε))) < ε. Observe that
BX∗ = convw∗

(Gen(X ,K)) = convw∗
(Spear(X∗)) implies that X is lush by [9, Propo-

sition 3.32]. Conversely, if X is lush and separable, then BX∗ = convw∗
(Gen(X ,K)) by [9,

Theorem 3.33]. If one replaces the weak-star closed convex hull by the norm closed convex
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hull, one gets some interesting results on almost CL-spaces. A Banach space X is said to be
an almost CL-space [13] if BX is the absolutely closed convex hull of every maximal convex
subset of SX . By Hahn-Banach and Krein-Milman theorems, every maximal convex subset
of SX has the form Face(SX , x∗) := {x ∈ SX : x∗(x) = 1} for suitable x∗ ∈ ext(BX∗). In
this case, we say that x∗ is a maximal extreme point, and write x∗ ∈ extm(BX∗).

Proposition 13 Let X be a Banach space satisfying that BX∗ = conv(Gen(X ,K)). Then, X∗
is an almost CL-space.

Proof Indeed, let F = Face(SX∗ , x∗∗) for some x∗∗ ∈ extm(BX∗∗) be a maximal convex
subset of SX∗ . Then, BX∗ = conv(TF) since Spear(X∗) ≡ Gen(X ,K) ⊆ TFace(SX∗ , x∗∗)
for all x∗∗ ∈ ext(BX∗∗) by [9, Corollary 2.8.iv]. ��

A partial converse of the above result is also true.

Proposition 14 Let X be an almost CL-space. Then, BX∗ = convw∗
(Gen(X ,K)). If, more-

over, X is separable and it does not contain �1, then BX∗ = conv(Gen(X ,K)).

Proof Being extm(BX∗) norming for X , we always have that

BX∗ = convw∗
(extm(BX∗)).

But when X is an almost CL-space, we have that |x∗∗(x∗)| = 1 for every x∗∗ ∈ ext(BX∗∗)
and every x∗ ∈ extm(BX∗) by using [16, Lemma 3]. Then, extm(BX∗) ⊆ Spear(X∗) ≡
Gen(X ,K) by [9, Corollary 2.8.iv], and we are done.

For themoreover part, it is enough to observe that extm(BX∗) is actually a James boundary
for X and so BX∗ = conv(extm(BX∗)) by [6, Theorem III.1]. ��

Our next aim is to show that the set Gen(L1(μ), Y ) is quite big for every finite measure
μ and many Banach spaces Y , and that in some cases it allows to recover the unit ball of
L(L1(μ), Y ) by taking closed convex hull. Given a finite measure space (�,�,μ) and a
Banach space Y we write

R(L1(μ), Y ) := {T ∈ L(L1(μ), Y ) : ‖T ‖ ≤ 1, T is representable}.
Theorem 3 Let (�,�,μ) be a finite measure space and let Y be a Banach space. Then,

R(L1(μ), Y ) ⊆ conv (Gen(L1(μ), Y )) .

As a consequence, if Y has the RNP, then

BL(L1(μ),Y ) = conv (Gen(L1(μ), Y )) .

Observe that the restriction on the measure μ to be finite can be relaxed to be σ -finite as
in Remark 2.

The proof of the theorem follows immediately using Corollary 7 and the next lemma,
which we do not know whether it is already known (the scalar case is well known and can
be found, for instance, in [20] for the complex case and [7] for the real case).

Lemma 4 Let (�,�,μ) be a positive measure space and let Y be a Banach space. Then,

BL∞(μ,Y ) = conv
({g ∈ L∞(μ, Y ) : ‖g(t)‖ = 1 μ-almost everywhere}).

123



   90 Page 22 of 25 V. Kadets et al.

Proof CallingB = {g ∈ L∞(μ, Y ) : ‖g(t)‖ = 1μ-almost everywhere}, it obviously suffices
to show that SL∞(μ,Y ) ⊂ conv(B). We divide the proof into two steps.

Step one. Let f ∈ SL∞(μ,Y ) and suppose that there are N ∈ N, numbers α1 < · · · <

αN ∈ [0, 1], and pairwise disjoint subsets Bk ⊂ � with μ(Bk) 	= 0 for k = 1, . . . , N such
that

⋃N
k=1 Bk = � and ‖ f (t)‖ = αk for every t ∈ Bk and every k = 1, . . . , N (observe that

αN = 1 as ‖ f ‖ = 1). Then, f can be written as a convex combination of 2N−1 functions in
B.

Indeed, we proceed by induction on N : for N = 1, the function f belongs to B. The
case N = 2 gives the flavour of the proof. In this case we have that ‖ f (t)‖ = α1 for every
t ∈ B1 and ‖ f (t)‖ = 1 for every t ∈ B2. So, call λ1 = 1+α1

2 , λ2 = 1−α1
2 ∈ [0, 1] and define

g1, g2 ∈ L∞(μ, Y ) by g1(t) = g2(t) = f (t) for every t ∈ B2. Besides, if α1 	= 0, define

g1(t) = f (t)

‖ f (t)‖ , and g2(t) = − f (t)

‖ f (t)‖ ∀t ∈ B1.

If otherwise α1 = 0, fix y0 ∈ SY , and define g1(t) = y0 and g2(t) = −y0 for every t ∈ B1.
It is clear that in any case we have f = λ1g1 + λ2g2 and that g1, g2 ∈ B.

Suppose now that the result is true for N ≥ 2 and let us prove it for N + 1. So, let
f ∈ SL∞(μ,Y ) and suppose that there are numbers α1 < · · · < αN+1 ∈ [0, 1]with αN+1 = 1,
and pairwise disjoint subsets Bk ⊂ � with μ(Bk) 	= 0 for k = 1, . . . , N + 1 such that⋃N+1

k=1 Bk = � and ‖ f (t)‖ = αk for every t ∈ Bk and every k = 1, . . . , N + 1. Observe
that, as N ≥ 2, we have that αN > 0. Then, we call λ1 = 1+αN

2 , λ2 = 1−αN
2 ∈ [0, 1] and we

define f1, f2 ∈ L∞(μ, Y ) by

f1(t) = f (t)

‖ f (t)‖ if t ∈ BN and f1(t) = f (t) if t ∈ � \ BN ,

f2(t) = − f (t)

‖ f (t)‖ if t ∈ BN and f2(t) = f (t) if t ∈ � \ BN

which clearly satisfy f = λ1 f1 + λ2 f2. Besides, it is also clear that ‖ f1(t)‖ = ‖ f2(t)‖ = 1
for every t ∈ BN ∪ BN+1. So, we can apply the induction step for f1 and f2 to write

f1 =
2N−1∑
k=1

μk gk and f2 =
2N−1∑
k=1

βkhk

where gk, hk ∈ B, μk, βk ∈ [0, 1] for k = 1, . . . , 2N−1,
∑2N−1

k=1 μk = 1, and
∑2N−1

k=1 βk = 1.
Therefore, the convex combination we are looking for is

f = λ1

2N−1∑
k=1

μk gk + λ2

2N−1∑
k=1

βkhk

which finishes the induction process.
Step two. Every function f ∈ SL∞(μ,Y ) can be approximated by functions of the class

described in the first step.
Indeed, fixed ε > 0, we may find a partition of [0, 1] = ⋃N

k=1 Ak such that 0 <

diam(Ak) < ε for every k = 1, . . . , N , 0 ∈ A1, and 1 ∈ AN . Next, fix αk ∈ Ak for
each k = 1, . . . , N with α1 = 0 and αN = 1, and define Bk = {t ∈ � : ‖ f (t)‖ ∈ Ak} for
every k = 1, . . . , N . We assume without loss of generality that B1, . . . , BN are non-empty.
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Now, consider the function h ∈ L∞(μ, Y ) given by

h(t) =
⎧⎨
⎩
0 if t ∈ B1

αk
f (t)

‖ f (t)‖ if t ∈ Bk with k ≥ 2.

For t ∈ B1, we have

‖ f (t) − h(t)‖ = ‖ f (t)‖ ≤ diam(A1) < ε.

Besides, for t ∈ Bk with k ≥ 2, we have

‖ f (t) − h(t)‖ =
∥∥∥∥ f (t) − αk

f (t)

‖ f (t)‖
∥∥∥∥ = ∣∣‖ f (t)‖ − αk

∣∣ ≤ diam(Ak) < ε.

Therefore, ‖ f − h‖ ≤ ε and the proof is finished. ��
Let us now discuss the case of purely atomic measures. When μ is purely atomic and σ -

finite (so L1(μ) can be easily viewed as L1(ν) for a suitable purely atomic and finite measure
ν, see [4, Proposition 1.6.1] for instance), every operator in L(L1(μ), Y ) is representable for
every Banach space Y (see [5, p. 62], for instance). So, Theorem 3 gives that BL(�1(�),Y ) =
conv(Gen(�1(�), Y )) for every Banach space Y and every countable set �. Actually, the
restriction of countability for the set � can be removed and the proof in this case is much
more direct.

Proposition 15 BL(�1(�),Y ) = conv(Gen(�1(�), Y )) for every Banach space Y and every set
�.

Proof The space L(�1(�), Y ) can be easily identified with
[⊕

γ∈� Y
]
�∞

using the isometric

isomorphism� : L(�1(�), Y ) −→
[⊕

γ∈� Y
]
�∞

given by�(T ) = (T eγ )γ∈� (see the proof

of [19, Lemma 2], for instance).With this identification and Corollary 2, generating operators

inL(�1(�), Y ) are exactly elements in
[⊕

γ∈� Y
]
�∞

with every coordinate having norm one.

Therefore, Lemma 4 gives the result. ��
For finite-dimensional �1-spaces, we get a better result.

Corollary 11 BL(�n
1 ,Y ) = conv(Gen(�n

1, Y )) for every Banach space Y and every n ∈ N.

Proof For T ∈ BL(�n
1 ,Y ) consider the finite-dimensional subspace of Y given by Y1 = T (�n

1)

and observe that conv(Gen(�n
1, Y1)) = conv(Gen(�n

1, Y1)) as Gen(�n
1, Y1) is compact. So,

Proposition 15 tells us that

T ∈ conv(Gen(�n
1, Y1)).

Finally, denoting G1 the inclusion of Y1 in Y , it is obvious that G1 ◦ G ∈ Gen(�n
1, Y ) for

every G ∈ Gen(�n
1, Y1). So T ∈ conv(Gen(�n

1, Y )). ��
The next result shows that the only finite-dimensional real spaces with this property are

�n
1 for n ∈ N.

Proposition 16 Let X be a real Banach space with dim(X) = n and such that BL(X ,Y ) =
conv(Gen(X , Y )) for every Banach space Y . Then, X = �n

1 .
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Proof Proposition 13 tells us that X∗ is an almostCL-space son(X∗) = n(X) = 1. Therefore,
as X is real, the set ext(BX ) is finite by [17, Theorem 3.2]. Our goal is to show that ext(BX )

contains exactly 2n elements as this clearly implies that X is isometrically isomorphic to the
real space �n

1.
We suppose that ext(BX ) hasmore than 2n elements andwe show that, in such a case, there

is a Banach space Y (= X with a new norm) such that BL(X ,Y ) 	= conv(Gen(X , Y )). Since
dim(X) = n and ext(BX ) has more than 2n elements, we may find {e1, . . . , en} ⊂ ext(BX )

linearly independent and en+1 ∈ ext(BX ) satisfying

en+1 /∈ {±e j : j = 1, . . . , n}.
For each j = 1, . . . , n, as ext(BX ) is finite, we can pick f j ∈ X∗ such that

1 = f j (e j ) > c j = max
{

f j (x) : x ∈ ext(BX ) \ {e j }
}
.

Besides, define c = max
{
c j : j = 1, . . . , n

}
< 1, take ε > 0 satisfying (1 + ε)c < 1, and

consider the Banach space Y whose unit ball is

BY = conv
(
ext(BX ) ∪ {±(1 + ε)en+1}

)
.

Now, observe that e1, . . . , en are also extreme points of BY . Indeed, fixed j ∈ {1, . . . , n},
our choice of c gives

f j (x) ≤ (1 + ε)c j < 1 = f j (e j )

for every x ∈ ext(BX ) ∪ {±(1 + ε)en+1} with x 	= e j . So e j cannot lie in a proper segment
of BY .

Observe that conv(Gen(X , Y )) = conv(Gen(X , Y )), as L(X , Y ) is finite-dimensional
and Gen(X , Y ) is norm-closed by Proposition 11.

Finally, consider the operator Id ∈ L(X , Y )which is not generating byCorollary 3 because
en+1 ∈ ext(BX ) and ‖ Id(en+1)‖Y = ‖en+1‖Y < 1. If Id ∈ conv(Gen(X , Y )), we may find
M ∈ N, λ1, . . . , λM ≥ 0 with

∑M
i=1 λi = 1 and G1, . . . , G M ∈ Gen(X , Y ) such that

Id =
M∑

i=1

λi Gi .

Then, for each j = 1, . . . , n, we have that

e j = Id(e j ) =
M∑

i=1

λi Gi (e j ) �⇒ Gi (e j ) = e j ∀ i ∈ {1, . . . , M}

as e j ∈ ext(BY ). Since {e1, . . . , en} is linearly independent and dim(X) = n, it follows
that Gi = Id for all i = 1, . . . , M . Therefore, we have that Id /∈ conv(Gen(X , Y )) =
conv(Gen(X , Y )) which finishes the proof. ��
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