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Histological images are often tainted with two or more stains to reveal their underlying structures. Blind Color 
Deconvolution (BCD) techniques separate colors (stains) and structural information (concentrations), which is 
useful for the processing, data augmentation, and classification of such images.
Classical analytical BCD methods are typically computationally expensive in two distinct ways. First, estimating 
the colors and concentrations corresponding to a given image is a time-consuming process. Second, the entire 
estimation procedure must be performed independently for each image.
In contrast, Deep Learning (DL) methods involve high training costs, but once trained, they are able to directly 
process unseen images. The application of DL to BCD has been limited by the absence of extensive databases 
containing ground truth color and concentrations. In this work, we propose BCD-Net, a deep variational 
Bayesian neural network for stain separation and concentration estimation. Under this framework, we address 
the challenge of lacking ground truth data by leveraging Bayesian modeling and inference techniques.
We propose to use a prior distribution on the stain colors, and a simple flat prior on the concentrations. BCD-
Net is trained by maximizing the evidence lower bound of the observed images. The loss function comprises two 
essential components: fidelity to the observed images and the Kullback-Leibler divergence between the estimated 
posterior distribution of colors and the selected prior.
The model is trained, validated, and tested on two multicenter databases: Camelyon-17 and Warwick stain 
separation benchmark. The proposed approach is tested on image reconstruction, stain separation, and cancer 
classification. It performs well when contrasted with classical non-amortized methods and offers a substantial 
computational time advantage. This marks a significant step forward in the application of DL techniques to 
address BCD and paves the way for new approaches.
1. Introduction

Staining is at the core of histological image analysis. Tissues must be 
tainted using a combination of stains to reveal their underlying struc-
tures. Then, they are scanned to obtain histological images that can be 
analyzed by pathologists and/or Computer-Aided Diagnosis (CAD) sys-
tems [14].
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Although data-driven CAD systems work well in several areas of 
diagnosis, their performance degrades significantly when tested on im-
ages from hospitals not included in the training set [33]. Intra- and 
inter-hospital chromatic variability [14,33] caused by differences in the 
staining of the images is often considered one of the major causes of the 
loss of performance. Beyond training CAD systems with more multi-
hospital data, several approaches have been proposed to tackle chro-
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Fig. 1. Graphical abstract. Overall architecture for BCD-Net (𝑆 = 2) including the subnetworks C-Net and M-Net. First, the image is transformed to the Optical 
Density (OD) space. Then, it is fed to both subnetworks. C-Net outputs two single-stain concentration images with the same size as the input. M-Net outputs a 3 ×𝑆

color-vector matrix and 𝑆 3 × 3 diagonal matrices. These correspond, respectively, to the mean vectors and the covariance matrices of the approximated posterior 
q(𝐌 ∣ 𝐘). Finally, the outputs from both subnetworks are combined following Eq. (2) to recover the OD image. For architecture design and details, see section 3. 
(*) Indicates that the sampling of q(𝐌) is done using the reparametrization trick.
matic variability. Of all of them, three stand out. The first, called stain 
normalization, aims at transforming the observed images into new ones 
as if they had been tainted using the same process. The second, called 
data augmentation, aims at hallucinating new images with augmented 
chromatic variability, with the objective of reducing the generalization 
error of CAD systems on unseen data. See [14] for more details.

In this work, we focus on the third one, called stain separation. Given 
that stains bind to specific elements in the tissue, chromatic variability 
jeopardizes the ability of the CAD system to correctly identify the struc-
tures of the tissues and their labels. By using stain separation techniques 
it is possible to identify and separate each stain in the image [14]. Note 
that the separation is more biologically meaningful than the mixture of 
stains in the observed RGB image [34]. Furthermore, stain separation 
has proven to be useful for automated diagnosis [8,9,24], as a prelimi-
nary step for stain normalization [19,25,35] and for data augmentation 
[24,33,41].

To tackle the stain separation problem, Blind Color Deconvolution 
(BCD) techniques are frequently used. After transforming the RGB im-
age to the Optical Density (OD) space, the stain color vectors and the 
corresponding stain structures, known as concentrations, are estimated. 
Most of the BCD methods used so far are analytical: they utilize an 
optimization-based process that has to be repeated for each image. Un-
fortunately, calculating the color vectors, concentrations, and model 
parameters, for each image independently, is a daunting and compu-
tationally demanding task.

Deep Learning (DL) methods are amortized: once they are trained, 
they provide a fast performance on test images. Unfortunately, they re-
quire large datasets for training and the stain separation ground truth 
is rarely available. Therefore, most DL approaches for histological im-
age processing have avoided the stain separation step and focused on 
stain normalization [5,39]. Most of these methods assume that the color 
distribution is laboratory-specific and perform style transfer between 
centers. However, unless intra-hospital color variations can be identi-
fied, they are unable to tackle it and, very importantly, they lose the 
interpretability that stain separation provides.

Blind Image Deblurring (BID) is a closely related field that shares 
similar challenges to BCD. From a blurry observed image, the goal of 
BID is to simultaneously estimate the blur kernel and the underlying 
clean image. In BCD, the goal is to estimate the color-vector matrix and 
the underlying stain concentrations from a multi-stained image. Typi-
cally, analytical BID techniques have been adapted to the BCD problem. 
Unfortunately, although ground truth images and blurs are easy to 
2

obtain, color-vector matrices and concentrations are hardly available, 
which has prevented the convenient and very useful adaptation of DL 
BID techniques to BCD.

In this work, we propose a deep variational Bayesian BCD neural 
network (BCD-Net) for stain separation and concentration estimation 
(see Fig. 1), which tackles the lack of ground truth by combining analyt-
ical Bayesian modeling and a DL framework [17]. Our work is inspired 
by Zhao et al. [40], for BID which uses blurred and clean ground truth 
images to define data-driven priors. Unfortunately, as we have already 
indicated, in the case of histological images, the stain-separated ground 
truth is neither available nor easy to obtain, so we must find an alter-
native way to introduce prior information.

This paper represents, to the best of our knowledge, the first attempt 
to use variational Bayesian DL techniques to amortizely solve the BCD 
problem. It is organized as follows. In section 2 we describe related 
studies, as well as our contributions to this paper. In section 3 we detail 
the proposed deep variational BCD model and inference process. We 
then present the network architecture and its two subnetworks in Sec-
tion 4. Sections 5 and 5.6 contain the experimental results and analysis. 
Finally, section 6 reports the conclusions of this work. All the acronyms 
used in this paper have been collected in Table A.7, included at the end 
of the paper.

2. Related works and contributions

2.1. Blind color deconvolution methods

Ruifrok et al. [29] proposed the use of the logarithmically inverted 
OD space and a non-blind color deconvolution algorithm to obtain the 
stain concentrations. They used an experimentally obtained standard 
color-vector matrix through fixed RGB triplets for hematoxylin, eosin, 
and diaminobenzidine. However, the color variability between different 
images was not addressed.

To automatically find the color-vector matrix, the use of Non-
negative Matrix Factorization was proposed by Rabinovich et al. [26]. 
The works by Vahadane et al. [35] and Xu et al. [37] used this technique 
and included sparsity regularization terms on the stain concentrations. 
To reduce its computational and memory cost, the use of Non-Negative 
Least Squares was proposed by Carey et al. [7].

Macenko et al. [19] proposed the use of Singular Value Decomposi-
tion (SVD) to find the optimal color-vector matrix and to separate the 
stains, setting an experimental threshold to remove noisy pixels. This 

work was later extended by McCann et al. [21] by taking into account 
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Table 1

Qualitative comparison with BCD related amortized methods.

Method Addresses Concentration Color-vector Ground Truth Used Applicable
Color Estimation Matrix to H&E
Variability Estimation Images

Duggal et al. [8] NO YES NO Synthetic: Macenko et al. [19] YES
Zheng et al. [41] NO YES NO Synthetic: Macenko et al. [19] YES

Marini et al. [20] YES NO YES
Synthetic: Macenko et al. [19]

YES
+ tumor classification labels

Abousamra et al. [1] YES YES YES single-stained dot labels NO
BCD-Net YES YES YES Not required YES

 

the interaction between dyes. Astola [4] proposed to use this decompo-
sition in the linearly inverted RGB space instead of the OD space, taking 
into consideration the RGB sensibilities of the camera.

Independent Component Analysis was utilized by Trahearn et al. [34],
including a correction step for those cases where the stain vectors were 
not orthogonal. Later, it was also used by Alsubaie et al. [2,3] to reduce 
the independence condition among sources.

In [10], stain vectors were estimated by projecting the input 
color image onto the Maxwellian chromaticity to form clusters. Khan 
et al. [15] estimated the color-vector matrix by performing Oct-tree 
quantization and a relevance vector machine to classify RGB pixels of 
interest. Recently, Salvi et al. [32] have presented a combination of 
segmentation and clustering strategies to obtain the color-vector matrix 
and separate the stains. Zheng et al. [42] proposed an adaptive method 
with an objective function that considers the minimization of residuals, 
the balance of the stains, and the overall energy using experimentally 
determined hyperparameters.

Probabilistic BID methods [30] have been adapted to solve the BCD 
problem. In BID, the blurred image is written as the convolution of 
the blur kernel and the latent clean image. Likewise, in BCD, follow-
ing the Beer-Lambert law, once the observed RGB histological image is 
transformed to the OD space, it can be expressed as the product of the 
color-vector matrix and the concentration matrix. In [11,23,25] this ob-
servation model was used in combination with different prior models on 
the concentrations, and the same prior model on the color vectors: nor-
mal independent distributions with mean the Ruifrok’s reference matrix 
[11,29,42] and covariances to be estimated. Obviously, these priors do 
not make use of the original stain separation. For all these probabilis-
tic models, the variational inference was used to obtain, per image, the 
approximation of the posterior distribution approximation of the color 
stains and concentrations. The work in [24] formulates the estimation of 
the color-vector matrix as a dictionary-learning problem using Bayesian 
K-SVD. Notice that these, as well as all the above-described methods, 
perform BCD on a per-image basis.

As mentioned earlier, DL approaches to BCD are scarce due to 
the lack of the stain separation ground truth for training. To be able 
to train a Deep Neural Network (DNN) with stain-separated images, 
Duggal et al. [8] introduced a color deconvolution layer that can be 
appended to the input of the network. The parameters of the deconvo-
lution layer emulate the color-vector matrix and are optimized during 
training (being initialized using [19]). This approach does not address 
chromatic variability between images and requires the normalization 
of the dataset before training. Similarly, in [20] a Convolutional Neu-
ral Network (CNN) was proposed to learn stain-invariant features by 
estimating the color-vector matrix and the classification label at the 
same time. Zheng et al. [41] proposed a capsule network to produce 
multiple stain separation candidates that were later assembled using 
a sparse constraint and utilized for normalization. The deconvolution 
step was also done with network parameters, therefore it was not able 
to adapt to unseen color distributions. None of the above-mentioned DL 
approaches evaluates the quality of the stain separation after their BCD 
steps. Finally, Abousamra et al. [1] proposed an Autoencoder for stain 
3

separation of multiplex immunohistochemistry images stained with six 
different stains using manually placed dot labels for single-stained pix-
els as weak supervision.

To conclude, in Table 1 we summarize the key differences between 
the proposed BCD-Net and the amortized methods mentioned above. 
Only the method by Abousamra et al. [1] estimates both the color-
vector matrix and concentrations, but this approach cannot be extended 
to Hematoxylin-Eosin (H&E) images without a large annotated dataset. 
In addition, the other methods rely on synthetic ground truth, which 
could potentially introduce unexpected biases to the model.

2.2. DL stain normalization methods without BCD

In this section, we include DL-based stain normalization methods 
that do not use BCD. Although these works do not perform stain sepa-
ration, they are of interest as they show how DL has been applied to the 
processing of histological images.

Janowczyk et al. [13] proposed the use of Sparse Autoencoders for 
stain normalization. Their approach separates the pixels into 𝑘 clusters 
and then applies histogram equalization across clusters and RGB chan-
nels to obtain a color standardized image. Similarly, Zanjani et al. [39]
proposed the use of deep generative models to separate pixels into 𝑘 tis-
sue classes and then normalize the stains in the images by considering 
the separation of the source and target image.

Bentaieb and Hamarneh [5] combined classification and stain nor-
malization by using a Generative Adversarial Network where the gener-
ator normalizes the images and the discriminator distinguishes between 
original and normalized images at the same time that discriminates be-
tween benign and malign tissues. The training of this network requires 
images from at least two different centers, where one of them is consid-
ered the target appearance for normalized images.

Tellez et al. [33] proposed an U-Net-like architecture for stain nor-
malization fed with heavily color-augmented images and trained to 
reconstruct their original appearance. When trained with images from 
a target center, the network should be able to transform new images to 
the same target color distribution.

Finally, we emphasize that other popular CNN architectures such as 
Pix2pix [31] or CycleGAN [43], have been adapted to stain normaliza-
tion. The interested reader can refer to [14] for a complete review.

2.3. DL BID approaches of interest to DL BCD

Analytical probabilistic methods have been used to solve the BID 
problem [30] while CNNs have been trained to perform BID tasks in an 
amortized manner. See [36] for a recent survey of deep image deblur-
ring and [17,18] for connections between analytical and DL deblurring 
methods.

The variational network proposed by Yue et al. [38] and its exten-
sion in [40] combine the probabilistic modeling of analytical techniques 
with an amortized DL formulation also based on probabilistic modeling 
and inference to solve image processing problems. For a denoising prob-
lem, Yue et al. [38] propose the use of a prior based on the underlying 
real image. Using DL techniques they infer a network whose output is 
the amortized posterior of the real underlying image given the observed 

one. In [40] the model is extended to deal with BID problems. The prior 
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on the image is the same as in [38] while the prior on the blur is defined 
using a Dirichlet distribution [44]. Using DL techniques once more, the 
authors infer two networks that approximate the amortized posteriors 
of the real underlying image and blur, respectively, given the observed 
image.

It is important to emphasize that, in the DL methods just described, 
the original blurs and images are used to define the corresponding prior 
models. Here, for the BCD problem, we have access neither to the orig-
inal concentrations nor to the color vectors and so we can only make 
use of the observed histological images.

2.4. Our contributions

We combine ideas from the supervised methods for BID and denois-
ing in [38,40] with analytical BCD methods in [11,23,25] to propose 
an amortized deep variational Bayesian model for BCD. The method is 
named BCD-Net and is trained without stain color vectors and concen-
trations ground truth. Our contributions are detailed next.

• We define an amortized DL probabilistic modeling of the BCD prob-
lem with three components: a normal prior on the color-vector 
matrix, a flat, improper prior on the concentrations, and an obser-
vation model given the stain color vectors and the concentrations.

• We design BCD-Net to have two subnetworks, C-Net and M-Net. 
We configure C-Net to produce the maximum likelihood estima-
tion of the concentrations. Importantly, the use of maximum like-
lihood principles to estimate the C-Net parameters is simpler than 
outputting non-degenerate posterior distribution approximations. 
M-Net is designed to output a Gaussian approximation of the pos-
terior distribution of the stain color vectors.

• For these posterior approximations, the Evidence Lower Bound 
(ELBO) to be optimized has two terms. The first one measures how 
close the estimated posterior of the stain color vectors is to the pro-
posed color vector priors, while the second one accounts for the 
fidelity of the reconstruction to the observed image.

• The proposed BCD-Net is evaluated and compared against state-
of-the-art methods in three different tasks: image reconstruction, 
stain separation, and breast cancer classification. These experi-
ments show that BCD-Net reduces the computation time required 
by classical non-amortized methods while remaining competitive 
in terms of performance.

To the best of our knowledge, our model is the first amortized at-
tempt to use variational deep neural networks for BCD, and so provides 
an interesting framework for future DL BCD methods.

3. Deep variational Bayesian blind color deconvolution

Our model relies on two networks C-Net and M-Net that are used as 
estimators in a Bayesian framework. Section 3.1 defines the generative 
model, the priors that introduce the previous knowledge about the un-
observable stains and concentrations, and the observation model that 
relates them to the observed images. Section 3.2 details how the pos-
terior distributions are defined and how the loss function is derived to 
train the network with the observed data.

3.1. Modeling

Let 𝐈 ∈ ℝ𝐻𝑊 ×3 be a histological RGB image. We write 𝐈 =[
𝐢1,… , 𝐢𝐻𝑊

]⊤
where 𝐢𝑘 =

[
𝑖𝑅𝑘, 𝑖𝐺𝑘, 𝑖𝐵𝑘

]⊤ ∈ ℝ3. Following [11], we de-
fine the transformation to the OD absorbency space as

𝑦𝑐𝑘 = −log(𝑖𝑐𝑘∕255), (1)

where 𝑘 ∈ {1,… ,𝐻𝑊 } is the pixel index and 𝑐 ∈ [𝑅, 𝐺, 𝐵] is the RGB [ ]
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channel index. We denote 𝐘 = 𝐲1,… ,𝐲𝐻𝑊 ⊤ ∈ ℝ𝐻𝑊 ×3, where 𝐲𝑘 =
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𝑦𝑅𝑘, 𝑦𝐺𝑘, 𝑦𝐵𝑘

]⊤ ∈ ℝ3. According to the Beer-Lambert law, each pixel 
𝐲𝑘 in the OD image 𝐘 can be modeled as

𝐲𝑘 =𝐌𝐜𝑘 + 𝝐 (2)

where 𝐌 ∈ ℝ3×𝑆 denotes the color-vector matrix, 𝐜𝑘 ∈ ℝ𝑆 is the stain 
concentration of the 𝑘 − 𝑡ℎ pixel and 𝝐 ∈ ℝ3 is a noise vector. Here, 𝑆
is the number of stains. We can decompose the contribution from each 
stain as follows,

𝐲𝑘 =
𝑆∑
𝑠=1

𝑐𝑘𝑠𝐦𝑠 + 𝝐, (3)

where 𝐦𝑠 ∈ ℝ3 is the color-vector associated to the 𝑠 − 𝑡ℎ stain and 
𝑐𝑘𝑠 is the concentration of the 𝑠 − 𝑡ℎ stain for pixel 𝑘. This way, 
𝐌 =

[
𝐦1,… ,𝐦𝑆

]
and 𝐜𝑘 =

[
𝑐𝑘1 ,… , 𝑐𝑘

𝑆

]⊤
. In the following, we will use 

𝐂 =
[
𝐜1,… , 𝐜𝐻𝑊

]
∈ ℝ𝑆×𝐻𝑊 to denote the matrix with all the concen-

trations for all pixels.
We consider the following generative model

p(𝐂,𝐌,𝐘) = p(𝐂)p(𝐌)p(𝐘 ∣𝐌,𝐂), (4)

for which we must define the priors p(𝐂), p(𝐌) and the observation 
model p(𝐘 ∣𝐌, 𝐂). We start with p(𝐂), an appealing idea would be to 
define a data-driven prior as in [40]. Unfortunately, a sufficiently large 
dataset of stain-separated ground truth concentrations does not exist. 
Another alternative would be to consider priors that provide general 
information about the concentrations [11,23,25], but since this would 
increase the complexity of the model, we decide to keep it simple and 
use the following improper flat prior

p(𝐂) ∝ const, ∀ 𝐂. (5)

As will be explained later, this choice leads to the use of maximum 
likelihood to estimate the concentrations.

Now we want to define a prior p(𝐌) on the color vectors. Again, we 
do not have enough data to define a data-driven prior. However, since 
the staining protocol (e.g. H&E) is known and it is generally accepted 
that the color vectors are always close to those provided by Ruifrok’s 
reference matrix [11,29,42], we choose the following prior on 𝐌,

p(𝐌) =
𝑆∏
𝑠=1

p(𝐦𝑠) =
𝑆∏
𝑠=1

 (𝐦𝑠 ∣𝐦Rui
𝑠 , 𝛾Rui𝑠 𝐈), (6)

where 𝐌Rui =
[
𝐦Rui

1 ,…𝐦Rui
𝑆

]
is the reference matrix of Ruifrok [29]. 

The variances 𝛾Rui1 , ..., 𝛾Rui
𝑆

> 0 control the amount of variation allowed 
in each stain. We explore the importance of these values in the ablation 
study in Section 5.

Finally, assuming that all the components of 𝝐 in Eq. (2) are inde-
pendent and identically distributed according to  (0, 𝜆2𝑛), we can write,

p(𝐘 ∣𝐌,𝐂) ∝ exp

(
− 1
2𝜆2𝑛

‖‖‖𝐘⊤ −𝐌𝐂‖‖‖2F
)
, (7)

where ‖⋅‖F denotes the Frobenius norm and 𝜆2𝑛 is the noise variance of 
the observation model.

3.2. Inference

To estimate 𝐂 and 𝐌 for each observation 𝐘 we need to compute the 
posterior p(𝐂, 𝐌 ∣ 𝐘). Since it does not admit an analytical expression, 
we use variational inference and approximate it by q(𝐂, 𝐌 ∣𝐘). In con-
trast to previous works [11,23,25], where the variational approach was 
also used, here we proceed in a different -amortized- manner. To build 
the inference model q(𝐂, 𝐌 ∣ 𝐘) = q(𝐂 ∣ 𝐘)q(𝐌 ∣ 𝐘) we consider two 
DNNs. The first DNN, C-Net, is used to define q(𝐂 ∣ 𝐘). It has parame-

ters 𝜶, takes as input the OD image 𝐘, and outputs the concentration 
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estimates 𝐂𝜶(𝐘) ∈ ℝ𝑆×𝐻𝑊 . We decide to estimate 𝐂 deterministically 
using a degenerate distribution,

q𝜶(𝐂 ∣𝐘) =
{

1 if 𝐂 =𝐂𝜶(𝐘),
0 otherwise.

(8)

Under this distribution, 𝐂 takes the value 𝐂𝜶(𝐘) with probability 1 and, 
therefore, its variance is zero.

The second network, M-Net, defines q(𝐌 ∣ 𝐘). M-Net has param-
eters 𝜷 , takes as input the OD image 𝐘 and outputs the means 
𝝁
𝜷

1 (𝐘), … , 𝝁𝜷

𝑆
(𝐘) ∈ℝ3 and variances 𝜎𝜷1 (𝐘)

2
, … , 𝜎𝜷

𝑆
(𝐘)

2
∈ℝ for the ap-

proximated posterior,

q𝜷 (𝐌 ∣𝐘) =
𝑆∏
𝑠=1

q𝜷
(
𝐦𝑠

)
=

𝑆∏
𝑠=1


(
𝐦𝑠 ∣ 𝝁𝜷

𝑠 (𝐘), 𝜎
𝜷
𝑠 (𝐘)

2𝐈3×3
)
. (9)

To estimate 𝜶 and 𝜷 we will use a large dataset of OD histological 
images, denoted by  . Both networks, C-Net and M-Net, will be trained 
to maximize the following Evidence Lower Bound (ELBO) of the log-
likelihood of the observations,

ELBO() =
∑
𝐘∈

ELBO(𝐘) (10)

where

ELBO(𝐘) =𝔼q(𝐂,𝐌∣𝐘)

[
log

p(𝐂,𝐌,𝐘)
q(𝐂,𝐌 ∣𝐘)

]
= −𝔼q𝜶 (𝐂∣𝐘)

[
log

q𝜶(𝐂 ∣𝐘)
p(𝐂)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴1

+

− 𝔼q𝜷 (𝐌∣𝐘)

[
log

q𝜷 (𝐌 ∣𝐘)
p(𝐌)

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐴2

− 1
2𝜆2𝑛

𝔼q𝜷 (𝐌∣𝐘)

[‖‖‖𝐘⊤ −𝐌𝐂𝜶(𝐘)‖‖‖2F
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴3

+const. (11)

Since p(𝐂) is improper and q𝜶(𝐂 ∣ 𝐘) is degenerate the term 𝐴1 is not 
properly defined and is not considered. Actually, this term is minus 
infinity since the divergence between these two distributions is infinite. 
Note that this is not a problem: if we had used maximum likelihood for 
the C-Net parameters and the same approximate posterior distribution 
q𝜷 (𝐌) for the color matrix, this term would have not appeared.

The term 𝐴2 corresponds to the negative of the Kullback-Leibler 
divergence between the two Gaussian distributions in Eq. (6) and Eq. 
(9),

𝐴2 =
𝜷

KL(𝐘) =
1
2

𝑆∑
𝑠=1

‖‖‖𝝁𝜷
𝑠 (𝐘) −𝐦Rui

𝑠
‖‖‖2

𝛾Rui𝑠

+ 3
2

𝑆∑
𝑠=1

⎛⎜⎜⎝
𝜎
𝜷
𝑠 (𝐘)

2

𝛾Rui𝑠

− log
𝜎
𝜷
𝑠 (𝐘)

2

𝛾Rui𝑠

− 1
⎞⎟⎟⎠ . (12)

The term 𝐴3 admits a closed-form expression as follows,

𝐴3 = − 1
2𝜆2𝑛

(‖‖‖𝐘⊤ − 𝝁𝜷 (𝐘)𝐂𝜶(𝐘)‖‖‖2F + 3
𝐻𝑊∑
𝑘=1

𝑆∑
𝑠=1

𝑐𝑘𝑠
𝜶(𝐘)2𝜎𝜷𝑠 (𝐘)

2
)
, (13)

where 𝝁𝜷 (𝐘) =
[
𝝁
𝜷

1 (𝐘),… ,𝝁
𝜷

𝑆
(𝐘)

]
. However, we have found the train-

ing procedure to be much more stable if we use the reparameterization 
trick instead [16]. Thus, we approximate 𝐴3 ≈ −0.5𝜆−2𝑛 

𝜶,𝜷

MSE(𝐘) where


𝜶,𝜷

MSE(𝐘) =
1

𝑁𝐌∑[‖‖‖𝐘⊤ −𝐌𝜷

𝑖
(𝐘)𝐂𝜶(𝐘)‖‖‖2

]
, (14)
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nd 
{
𝐌𝜷

1 ,… ,𝐌𝜷

𝑁𝐌

}
are samples drawn from q𝜷 (𝐌 ∣ 𝐘). Therefore, 

he ELBO in Eq. (11) is approximated as ELBO(𝐘) ≈ −𝜷

KL(𝐘) −
.5𝜆−2𝑛 

𝜶,𝜷

MSE(𝐘) + const. Instead of maximizing the approximated lower 
ound, we equivalently minimize the negative approximated ELBO, 
hich yields the following objective

() =
∑
𝐘∈

[

𝜷

KL(𝐘) +
1
2𝜆2𝑛


𝜶,𝜷

MSE(𝐘)
]
. (15)

he two terms in the above equation play very important roles. The 
rst monitors M-Net to provide a color distribution close to the prior 
nd the second combines both C-Net and M-Net to provide a good re-
onstruction of the observed image according to the observation model. 
s for the values of 𝜆2𝑛 and 𝛾Rui1 , … , 𝛾Rui

𝑆
, in this work we choose not to 

utomatically estimate them and study their effect in the loss function 
nstead (see the ablation study in Section 5). For the noise variance, we 
ssume it to be independent of the observed image, and the same for 
very image. For the color-vector variance, we assume it to be the same 
or every stain, i.e., 𝛾Rui = 𝛾Rui1 =⋯ = 𝛾Rui

𝑆
. Thus being defined, 𝜆2𝑛 and 

Rui determine the balance between the terms involved in the loss func-
ion. To experimentally determine how this balance affects the results 
nce 𝛾Rui is fixed, we redefine the objective in Eq. (15) to include a 
eighting parameter 0 < 𝜃 = 1∕(1 + 0.5𝜆−2𝑛 ) < 1,

() =
∑
𝐘∈

[
𝜃

𝜷

KL(𝐘) + (1 − 𝜃)𝜶,𝜷

MSE(𝐘)
]
, (16)

In summary, the proposed inference model uses two networks, C-
et and M-Net. Both branches, C-Net and M-Net, jointly define BCD-Net 

depicted in Fig. 2) for the Bayesian modeling and inference presented 
n this section. Each of them has a specific task: to estimate the stain 
oncentrations in the case of C-Net and to estimate the color-matrix 
osterior in the case of M-Net. However, they are jointly trained to re-
onstruct the observed image according to the Beer-Lambert model in 
q. (7). In addition, M-Net is also constrained by the prior defined on 
he color vectors. Note that using two subnetworks to boost the perfor-
ance of a joint task, which amounts to an independence assumption 

n the posterior approximation, is a common approach in blind image 
eblurring [22,40] and denoising [38].

. Network architecture

The proposed network is depicted in detail in Fig. 2. For the de-
ign of C-Net, we follow [40] and rely on the commonly used Unet [28]
proposed for biological image segmentation) to estimate the stain con-
entrations. The output of C-Net has two layers, one for each stain in 
he H&E image, and the same size in pixels as the input image. We 
se four scales in both encoder and decoder, where each encoder and 
ecoder block includes three stacked ResBlocks with LeakyReLU activa-
ion and a small kernel size of 3 × 3. The number of channels per layer 
s set to 64. Each downsampling block uses a convolution layer with a 
 × 3 filter and a stride of 2. The upsampling uses a transposed convo-
ution with a 5 × 5 filter and a stride of 2. This architecture is expected 
o capture multi-scale features and to accurately estimate the concen-
ration of the stains in the image. The detailed structures of each block 
re depicted in Fig. 3.

For the estimation of the color-vector matrix posterior, M-Net uses 
he bottleneck MobileNet V3 Small [12] followed by a linear fully con-
ected layer. MobileNet V3 reduces the number of parameters with 
echniques such as squeeze-and-excite, reducing the number of initial 
lters, or by using bottleneck layers, which considerably reduces the 
omputational cost of the Resnet used in [40]. This choice of network 
s motivated by the reduced size of the color-vector matrix, which is 
ften smaller than a blur kernel. The output of M-Net is the estima-
ion of the means and the logarithm of the variances of the variational 
approximation of the color-vector matrix posterior. As the mean is re-
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Fig. 2. Detailed architecture for BCD-Net including the subnetworks C-Net and M-Net, the overview of the Bayesian framework and loss. C-Net implements a 
Unet architecture and M-Net the bottleneck MobileNet V3 Small. The loss function includes two terms. 𝜶,𝜷

MSE(𝐘) combines both C-Net and M-Net to achieve a 
reconstruction of the input image. 𝜷 (𝐘) monitors M-Net to provide a color distribution close to the prior. See section 3 for inference details.
KL

Fig. 3. Detailed structures for each block in C-Net.

quired to have a unitary norm, we include an L2 constraint [27] for its 
corresponding output.

5. Experiments and training details

In this section, we carry out an empirical validation of our proposed 
BCD-Net. To this end, we first describe the public datasets used in this 
work and provide detailed information about the implementation of 
BCD-Net. Then, we perform an empirical study to select the hyperpa-
rameters of our model: the standard deviation 𝛾𝑠 of the color-vector 
matrix prior in Eq. (6) and the 𝜃 parameter of the loss function of Eq. 
(16). The effect of the parameters is investigated through an ablation 
study that takes into account the reconstructed images and the stain 
separation quality. The results are compared with the current state-
of-the-art methods for stain separation in terms of performance and 
computational efficiency. Finally, we consider a cancer classification 
problem to show how deconvolved images can be used to improve the 
performance of a CNN-based CAD system.

5.1. Datasets

5.1.1. Camelyon-17

This database was created for the Camelyon-17 breast cancer classi-
fication challenge [6] in collaboration with 5 different medical centers 
in the Netherlands. The database includes intra- and inter-center color 
variations. An example is depicted in Fig. 4. Following [24,42], we use 
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the 500 slides (100 from each center) that were released as the train-
ing set for the challenge, from which we extracted 500 non-overlapping 
patches of size 224 × 224 from each slide, only patches with at least 
70% tissue were considered. This database has been labeled for cancer 
classification but does not contain any stain separation ground truth. 
Our model is trained using the images from the centers identified as 0, 
2, and 4 in [6] and validated using the images from the remaining two 
centers, allowing us to capture a wide range of variations and study 
whether BCD-Net is able to generalize to multiple centers.

5.1.2. Warwick Stain Separation Benchmark (WSSB)

This dataset was collected by Alsubaie et al. [3] and considers the 
color variation between tissue types and laboratories. It is of particu-
lar interest for evaluating the performance of BCD methods because it 
contains the ground truth stain matrix for the 24 images of three differ-
ent tissue types (breast, lung, and colon) that comprise the dataset. The 
stain color matrix was obtained by asking pathologists to identify pix-
els of biological structures that were stained with a single stain. That 
is, nuclei pixels for hematoxylin and cytoplasm for eosin. The manually 
selected pixels were used to calculate the median color-vector for each 
stain. Then the ground truth concentrations 𝐂𝐺𝑇 were obtained as

𝐂𝐺𝑇 =𝐌+
𝐺𝑇

𝐘, (17)

where 𝐌+
𝐺𝑇

is the Moore-Penrose pseudo-inverse of the ground truth 
color-matrix. From these ground-truth concentrations and color vectors, 
a separate RGB image is obtained for each stain. WSSB is used only for 
testing the proposed BCD-Net in the stain separation task.

5.2. Implementation details

BCD-Net is built using Pytorch.2 The experiments are performed on 
four NVIDIA GeForce RTX 3090. We used patches of size 224 × 224
and the batch size was set to 64 (16 per GPU). We utilized the ADAM 
optimizer with an initial learning rate of 10−4, which is halved every 3 
epochs if the loss does not decrease. We train BCD-Net for a total of 100 
epochs, but we include an early stopping callback to halt the training 
procedure if the loss has not decreased for 10 consecutive epochs. The 
results reported in the following experiments correspond to the best-
performing epoch on the validation data.

2 The code will be made available at https://github .com /vipgugr/ upon ac-

ceptance of the paper.

https://github.com/vipgugr/
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Fig. 4. 224 × 224 patches extracted from different images within the five different centers of Camelyon-17 to illustrate color variations between the centers.

Fig. 5. Graphical representation with 100 samples of the prior p(𝐌) in Eq. (6) for different values of 𝛾RuiH and 𝛾RuiE . Each sample is represented in the OD space 
according to the coordinates of each channel. Each sample is colored with the corresponding RGB value.
While each 𝜷

KL(𝐘) term in Eq. (16) is sensitive to the channel order 
due to the prior means for both stains, where hematoxylin and eosin 
should correspond to the first and second channels, respectively, the 

𝜶,𝜷

MSE(𝐘) term in the same equation is not channel-sensitive as long as 
the order of the channels of the C-Net and M-Net is the same. Obviously, 
the order of the stains is not important for the reconstruction of the 
image. A pre-training epoch is added to help the network determine the 
correct order by setting the weighting hyperparameter 𝜃 to 0.99. This 
forces the network to initially focus on optimizing 𝜷

KL(𝐘) instead of 

𝜶,𝜷

MSE(𝐘). After the pretraining epoch, 𝜃 is fixed to the values specified 
in the ablation study in Section 5.3.

5.3. Ablation study

The behavior of the proposed BCD-Net depends on the hyperpa-
rameters 𝛾Rui and 𝜃, which controls our confidence in the reference 
color-vector matrix in Eq. (6) and the balance between the prior and 
reconstruction terms in the loss function of Eq. (16), respectively. No-
tice that this is equivalent to balancing the weight that both subnet-
works have on the training of BCD-Net, completely removing the terms 

𝜷

KL(𝐘) or 𝜶,𝜷

MSE(𝐘) when 𝜃 = 0 or 𝜃 = 1, respectively. In this section, 
we study the joint effect of these hyperparameters on two tasks: (i) im-
age reconstruction and (ii) stain separation.

In the first task, we analyze the fidelity to the observed optical den-
sity image, which indicates whether BCD-Net preserves the information 
in the image globally. For this purpose, we will use the Mean Square Er-
ror (MSE) between the observed and the reconstructed optical density 
image. The reconstruction MSE can be computed for Camelyon17 and 
WSSB, described in Subsections 5.1.1 and 5.1.2 respectively. The second 
task, stain separation, will assess whether the outputs of the C-Net and 
M-Net subnetworks correctly represent the structure and appearance of 
the tissue for each stain. We will use two well-known metrics: Peak Sig-
nal to Noise Ratio (PSNR) and Structural Similarity (SSIM) [3,24]. Note 
that stain-separated PSNR and SSIM values can only be calculated for 
the WSSB dataset. Before we discuss how 𝛾Rui𝑠 and 𝜃 affect these tasks, 
let us justify what values we are going to assign to these hyperparame-
ters.

Choosing values for 𝛾Rui. As previously mentioned, the Ruifrok 
matrix [24,29,33,42] is set as the mean of the color-vector prior that 
7

represents the H&E staining. For the prior variance, we consider the 
values 𝛾Rui = 𝛾RuiH = 𝛾RuiE ∈ {0.001, 0.05, 0.1, 0.2} (the same variance for 
each stain). This amounts to assuming the same diagonal covariance 
matrix 𝛾Rui𝐈 for all stains. To illustrate the effect of these choices for 
𝛾Rui, Fig. 5 depicts random samples from the corresponding prior dis-
tributions. Small values of 𝛾Rui result in a priori low uncertainty on 
the prior mean values prior, and therefore all samples are close to the 
Ruifrok matrix. Large values increase the uncertainty and produce more 
variable stain pairs, including unrealistic stain colors or the possibility 
of confusing the hematoxylin and eosin channels. An optimal value of 
𝛾Rui should produce enough variation while keeping the H&E stains 
well separated. Also, note that small values of 𝛾Rui give more impor-
tance to those terms in 𝜷

KL(𝐘) (see Eq. (12)). Therefore, a lower value 
of 𝜃 might be necessary to balance the loss function.

Choosing values for 𝜃. If we consider 𝛾Rui fixed, this hyperparam-
eter determines the importance of 𝜷

KL(𝐘) and 𝜶,𝜷

MSE(𝐘) in the loss 
function. Note that choosing a value for 𝜃 amounts to choosing a value 
for 𝜆2𝑛, but it also has the effect of giving more weight to one term or 
another in the loss function. On the one hand, small values of 𝜃 increase 
the relevance of the fidelity term 𝜶,𝜷

MSE(𝐘). Setting 𝜃 = 0.0 removes the 
term 𝜷

KL(𝐘) and trains the whole network only with 𝜶,𝜷

MSE(𝐘). On the 
other hand, large values of 𝜃 balance the loss towards similarity to the 
prior p(𝐌). Setting 𝜃 = 1.0 removes the term 𝜶,𝜷

MSE(𝐘) and, therefore, 
C-Net does not participate in the training procedure. Thus, the ultimate 
goal of BCD-Net becomes to output p(𝐌). To study how this balance 
affects the results, we consider the values 𝜃 ∈ {0.0, 0.3, 0.5, 0.7, 1.0}, 
which roughly corresponds to 𝜆2𝑛 ∈ {0.0, 0.0555, 0.2142, 0.5, 1.1666, ∞}. 
As we approach 𝜃 = 1.0, the noise variance increases towards the infi-
nite and the information from the prior becomes more relevant.

The results for each combination of hyperparameters can be found 
in Table 2 and are summarized in Fig. 6. Figs. 6a and 6b show that large 
values of 𝜃 tend to produce worse reconstructions with higher variabil-
ity, especially when 𝛾Rui is large. This is what we expected, since as 𝜃
increases the importance shifts from 𝜶,𝜷

MSE(𝐘) to 𝜷

KL(𝐘). Interestingly, 
small values of 𝛾Rui produce high-quality reconstructions even when 
𝜃 = 1.0 (in this case the term 𝜶,𝜷

MSE(𝐘) is only used in the pretrain-

ing epoch). Small values of 𝛾Rui translate into the posterior distribution 
q(𝐌) having lower variance (see Eq. (12)). Since 𝜶,𝜷

MSE(𝐘) is computed 

by sampling from q(𝐌), the generated samples are close and produce 
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Fig. 6. Reconstruction MSE, PSNR, and SSIM for each of the considered values of 𝛾Rui and 𝜃.

Table 2

Reconstruction MSE, PSNR, and SSIM for each combination of the considered values of 𝛾Rui and 𝜃. MSE has been calculated 
for Camelyon-17 (Train and Validation sets) and WSSB observed images. PSNR and SSIM are calculated on WSSB using 
the stain-separated ground truth.

𝛾Rui 𝜃 𝜆2
𝑛

Rec. MSE ×102 Rec. MSE ×102 Rec. MSE ×102 PSNR SSIM
(Camelyon-17 Train) (Camelyon-17 Valid.) (WSSB) (WSSB) (WSSB)

0.001

0.0 0.0 0.0127 ± 0.0002 0.0443 ± 0.0032 0.0107 ± 0.0051 22.12 ± 0.79 0.8139 ± 0.0096
0.3 0.2142 0.0145 ± 0.0006 0.0554 ± 0.0019 0.0077 ± 0.0006 23.32 ± 0.09 0.8081 ± 0.0019
0.5 0.5 0.0155 ± 0.0002 0.0545 ± 0.0061 0.0077 ± 0.0021 23.34 ± 0.21 0.8117 ± 0.0029
0.7 1.1666 0.0166 ± 0.0004 0.0632 ± 0.0017 𝟎.𝟎𝟎𝟕𝟎 ± 0.0006 23.28 ± 0.07 0.8081 ± 0.0001
1.0 ∞ 0.0221 ± 0.0002 0.0864 ± 0.0007 0.0258 ± 0.0013 22.42 ± 0.03 0.7547 ± 0.0098

0.05

0.0 0.0 0.0120 ± 0.0008 0.0445 ± 0.0042 0.0096 ± 0.0028 22.43 ± 0.14 0.7933 ± 0.0153
0.3 0.2142 0.0169 ± 0.0005 0.0610 ± 0.0027 0.0126 ± 0.0008 𝟐𝟒.𝟐𝟖 ± 0.53 𝟎.𝟖𝟔𝟒𝟕 ± 0.0095
0.5 0.5 0.0218 ± 0.0019 0.0718 ± 0.0054 0.0160 ± 0.0013 23.84 ± 0.06 0.8290 ± 0.0051
0.7 1.1666 0.0304 ± 0.0026 0.0943 ± 0.0010 0.0201 ± 0.0036 22.15 ± 0.30 0.7891 ± 0.0098
1.0 ∞ 0.0536 ± 0.0047 0.1375 ± 0.0060 0.0488 ± 0.0031 21.06 ± 0.28 0.7196 ± 0.0109

0.1

0.0 0.0 0.0119 ± 0.0007 𝟎.𝟎𝟒𝟐𝟏 ± 0.0042 0.0081 ± 0.0015 21.70 ± 1.00 0.7796 ± 0.0443
0.3 0.2142 0.0171 ± 0.0008 0.0599 ± 0.0015 0.0115 ± 0.0008 23.28 ± 0.30 0.8541 ± 0.0088
0.5 0.5 0.0217 ± 0.0013 0.0766 ± 0.0035 0.0145 ± 0.0014 24.03 ± 0.20 0.8476 ± 0.0053
0.7 1.1666 0.0318 ± 0.0007 0.1012 ± 0.0050 0.0236 ± 0.0030 23.05 ± 0.19 0.8095 ± 0.0045
1.0 ∞ 0.0810 ± 0.0107 0.1830 ± 0.0147 0.0605 ± 0.0111 20.44 ± 0.30 0.6939 ± 0.0118

0.2

0.0 0.0 𝟎.𝟎𝟏𝟏𝟕 ± 0.0011 0.0430 ± 0.0010 0.0078 ± 0.0023 22.50 ± 0.61 0.8093 ± 0.0148
0.3 0.2142 0.0190 ± 0.0004 0.0653 ± 0.0016 0.0142 ± 0.0021 23.21 ± 0.58 0.8287 ± 0.0269
0.5 0.5 0.0241 ± 0.0015 0.0805 ± 0.0033 0.0212 ± 0.0037 22.70 ± 0.10 0.8453 ± 0.0011
0.7 1.1666 0.0367 ± 0.0081 0.1095 ± 0.0183 0.0314 ± 0.0050 23.42 ± 0.12 0.8260 ± 0.0137
1.0 ∞ 0.1346 ± 0.0057 0.2738 ± 0.0097 0.0986 ± 0.0090 19.57 ± 0.25 0.6762 ± 0.0055
similar reconstructions, making it easier for C-Net to estimate the right 
concentrations.

The best reconstruction performance in Camelyon-17 (in both train 
and validation subsets) is obtained with 𝜃 = 0.0, which removes 𝜷

KL(𝐘)
and forces BCD-Net to focus on the reconstruction term. However, bet-
ter reconstructions in the validation subset are obtained with a lower 
value of 𝛾Rui, which gives more importance to the term 𝜷

KL(𝐘) in the 
pretraining epoch (where 𝜃 = 0.99), see Table 2. Furthermore, in WSSB, 
which is used exclusively as a test set, the best reconstructions are ob-
tained when 𝜃 = 0.7 and 𝛾Rui = 0.001, which shifts the importance to 

𝜷

KL(𝐘). As expected, this term acts as a regularizer that prevents BCD-

Net from overfitting to the training set, while 𝜃 and 𝛾Rui jointly balance 
the importance of the terms in the loss function.

We now turn our attention to the stain separation task (Figs. 6c and 
6d). Not surprisingly, setting 𝜃 = 1.0 produces the worst results since 
BCD-Net is trained using only 𝜷

KL(𝐘). Although training the model 
using only 𝜶,𝜷

MSE(𝐘) (𝜃 = 0.0) gives acceptable results, the highest PSNR 
and SSIM values are obtained with intermediate values of 𝜃 (this is 
true no matter what value we choose for 𝛾Rui). This shows that both 
terms are necessary to obtain a proper stain separation. The best results 
are obtained when 𝛾Rui ∈ {0.05, 0.1}, which produces enough variation 
while keeping the H&E samples well separated (see Fig. 5). The best 
performance is obtained with 𝛾Rui = 0.05 and 𝜃 = 0.3. These values of 
the hyperparameters also show an acceptable reconstruction in terms of 
MSE, and the same color variance value (𝛾Rui = 0.05) has been shown 
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to provide realistic H&E variations in [25].
In conclusion, our results indicate that the use of the color-vector 
matrix prior improves the generalization of our model to unseen im-
ages as well as the quality of the stain separation. The right balance 
between the reconstruction term and the proximity to the color-vector 
matrix prior is of paramount importance. Giving too much weight to 
the former leads to a model where the separation may not be related 
to H&E, while not giving enough weight to it leads to overfitting to the 
color-vector matrix prior and poor structural reconstruction. Since no 
stain separation ground truth is used during the training of BCD-Net, 
both terms are necessary to obtain a model that leads to realistic stain 
separations and is able to handle color variation correctly. Finally, we 
would like to emphasize that, although the best hyperparameters might 
change when using other datasets, we believe that the need to promote 
the interaction between C-Net and M-Net through intermediate values 
of 𝜃 will remain regardless of the dataset chosen to train and validate 
the network.

According to the results obtained, we will set 𝛾Rui = 0.05 and 𝜃 =
0.3 in the following sections. These values involve both 𝜷

KL(𝐘) and 

𝜶,𝜷

MSE(𝐘) in the loss function with more weight given to the latter. They 
have been shown to properly reconstruct the images and achieve the 
best stain separation performance.

5.4. Comparison with state-of-the-art methods

In the previous section, we have studied the role 𝛾Rui and 𝜃 play 

and how they affect the reconstruction and stain separation tasks. In 
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Table 3

MSE⋅101 between the observed optical density and reconstructed images for the different methods on the WSSB dataset 
[3]. The best value of each subset is highlighted in bold.

Subset Non-blind Non-amortized Amortized

RUI MAC VAH ALS SAR TV SGP BKSVD ZHE BCD-Net

Lung 0.2033 0.1746 0.1691 0.2427 0.1676 0.1719 0.1703 0.0036 0.1361 0.0003 ± 0.0000
Breast 0.5816 0.3539 0.3594 0.2667 0.3586 0.3630 0.3607 0.0025 0.6833 0.0014 ± 0.0006
Colon 0.2559 0.2311 0.2287 0.4778 0.2277 0.2252 0.2235 0.0029 2.3460 0.0010 ± 0.0003
Mean 0.3469 0.2532 0.2524 0.3291 0.2513 0.2534 0.2515 0.0030 1.0551 0.0009 ± 0.0002

Table 4

PSNR for the different methods on the WSSB dataset [3]. The best value of each pair (subset, stain) is highlighted in 
bold.

Subset Stain Non-blind Non-amortized Amortized

RUI MAC VAH ALS SAR TV SGP BKSVD ZHE BCD-Net

Lung
H 22.47 19.52 25.87 20.62 32.91 33.10 35.21 32.67 19.51 27.22 ± 0.50
E 22.05 18.09 25.53 23.95 30.77 31.02 33.07 30.61 16.23 24.76 ± 0.19

Breast
H 15.27 26.24 25.46 24.60 28.81 29.14 30.50 32.20 15.31 24.35 ± 1.20
E 17.66 23.62 27.68 25.92 26.60 26.76 27.71 29.43 14.99 22.18 ± 1.12

Colon
H 22.27 23.91 25.83 21.11 28.57 28.62 29.01 34.08 17.89 24.71 ± 0.28
E 20.70 21.55 26.29 21.94 27.58 27.60 28.38 33.32 14.76 22.44 ± 0.10

Mean
H 20.00 23.22 25.72 22.11 30.10 30.29 31.57 32.98 17.57 25.43 ± 0.59
E 20.14 21.08 26.50 23.94 28.32 28.46 29.72 31.12 15.33 23.13 ± 0.46
Mean 20.07 22.15 26.11 23.03 29.21 29.38 30.65 32.05 15.45 24.28 ± 0.53

Table 5

SSIM for the different methods on the WSSB dataset [3]. The best value of each pair (subset, stain) is highlighted in bold.

Subset Stain Non-blind Non-amortized Amortized

RUI MAC VAH ALS HID TV SGP BKSVD ZHE BCD-Net

Lung
H 0.7987 0.7389 0.8912 0.5551 0.9763 0.9757 0.9898 0.9764 0.8116 0.9517 ± 0.0028
E 0.7734 0.5088 0.8195 0.8939 0.9306 0.9353 0.9654 0.9461 0.5390 0.8751 ± 0.0156

Colon
H 0.8141 0.8095 0.8851 0.7241 0.9542 0.9544 0.9638 0.9826 0.7894 0.9251 ± 0.0131
E 0.7456 0.6365 0.8904 0.8540 0.9139 0.9161 0.9414 0.9646 0.4625 0.7924 ± 0.0255

Breast
H 0.6215 0.9552 0.9239 0.8068 0.9528 0.9560 0.9751 0.9801 0.6488 0.9359 ± 0.0024
E 0.7644 0.9336 0.9550 0.9380 0.9464 0.9492 0.9645 0.9632 0.7150 0.7080 ± 0.0147

Mean
H 0.7448 0.8345 0.9100 0.6953 0.9611 0.9621 0.9762 0.9797 0.7500 0.9376 ± 0.0058
E 0.7611 0.6930 0.8883 0.8953 0.9303 0.9336 0.9571 0.9580 0.5722 0.7919 ± 0.0148
Mean 0.7530 0.7638 0.8992 0.7953 0.9457 0.9479 0.9667 0.9684 0.6611 0.8647 ± 0.0095
this section, we fix them to the values that obtain the best perfor-
mance and compare BCD-Net to the following approaches: the classi-
cal non-blind color deconvolution method by Ruifrok et al. [29], the 
non-amortized methods by Macenko et al. [19], Vahadane et al. [35], 
Alsubaie et al. [3], and Zheng et al. [42]. They will be denoted as RUI, 
MAC, VAH, ALS, and ZHE, respectively. We also include the Bayesian 
methods using Simultaneous Auto-regressive (SAR) [11], Total Varia-
tion (TV) [23], Super Gaussian Priors (SGP) [25], and Bayesian K-SVD 
(BKSVD) [24]. Notice that all these non-amortized methods require a 
function to be optimized for each image independently. The compari-
son is carried out on the WSSB dataset using MSE, PSNR, and SSIM as 
in the previous section.

First, we compare how accurately the considered methods recon-
struct the observed image. The results are shown in Table 3. The most 
accurate reconstruction is obtained by the newly proposed BCD-Net, 
although the other methods are optimized for each image. In particu-
lar, the proposed method outperforms RUI, from which we borrow the 
mean for the color-vector matrix prior. Recall that BCD-Net is trained 
to obtain a good reconstruction via the term 𝜶,𝜷

MSE(𝐘) in Eq. (16).
The comparison of the stain separation quality is presented in Ta-

bles 4 and 5. The proposed method is still far from the most recent 
non-amortized methods in terms of PSNR and SSIM. This is unsurpris-
9

ing, as non-amortized methods recalculate all model parameters per 
image, usually achieving superior performance. In addition, SAR, TV, 
SGP, and BKSVD methods also implement a more complex prior on the 
concentrations p(𝐂), which has been proven to have a positive impact 
on the results [24]. However, BCD-Net results are promising: despite 
being trained in an amortized way and without ground truth data, BCD-
Net outperforms RUI, ZHE, MAC, and ALS, and it is competitive with 
the commonly used method by VAH. The figures of merits show that 
the amortized BCD-Net model produces an appropriate estimation of 
the concentration and color-vector matrices. We also notice that non-
amortized methods also achieve higher fidelity to the hematoxylin than 
to the eosin channel, which was already mentioned in Section 5.3 for 
BCD-Net. Only the methods by VAH (PSNR) and ALS (both metrics) 
obtain higher figures of merits in the eosin.

A qualitative comparison is shown in Fig. 7 using a lung image from 
the WSSB dataset. Most of the non-amortized methods are able to cor-
rectly identify the stain appearance (color-vector matrix) in the image. 
The methods by MAC and ALS do not estimate correctly the hema-
toxylin color. The proposed BCD-Net obtains a mean color-vector matrix 
that is not exactly the ground truth but clearly differentiates the stains 
in the image. The differences in the structure (concentrations) of each 
stain are more difficult to notice, Fig. 8 presents a zoomed-in version 
that makes it easier to appreciate. At the ground truth, the eosin shows 

gaps in the tissue corresponding to pixels completely stained with hema-
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Fig. 7. (a) Depicts a single colon observed H&E image from WSSB, (b) shows the corresponding ground truth single stain H-only and E-only images, and (c)-(l) show 
the separation obtained by the competing methods. Hematoxylin and eosin separations are presented on the left and right-hand sides of each image, respectively.
toxylin. RUI and MAC do not capture this separation. ZHE and BKSVD 
move too much information from the eosin to the hematoxylin chan-
nels, creating bigger gaps. VAH discards some information from both 
channels. BCD-Net improves the estimation by RUI, especially on the 
hematoxylin channel, which is richer than the competitors. BCD-Net’s 
eosin channel captures the connective tissue better than MAC RUI, and 
ZHE but lacks some details and shows a blurring effect similar to SAR, 
which explains the low PSNR and SSIM values obtained for this chan-
nel.

5.5. Computational efficiency

We analyze the time required by each method to perform the stain 
separation of a 2000 ×2000 image in the WSSB dataset. The methods in 
the comparison were evaluated using CPU, as they are not implemented 
to run in GPU. The proposed BCD-Net was evaluated using an NVIDIA 
TITAN X GPU and the same CPU as the rest of the methods. The results 
are presented in Fig. 9. The biplots present the average required time 
vs. the mean PSNR and SSIM metrics from Tables 4 and 5. These figures 
allow us to visually compare the time efficiency and the stain separation 
quality of each model. The best methods are those close to the left-
top corner in both cases. When using the GPU, the proposed method 
is the fastest, requiring an average of 0.74 seconds. Notice that this 
makes our method even faster than the non-blind method RUI, which 
requires 0.81 seconds. BCD-Net is also 9.01 times faster than VAH (6.76 
s) while being competitive in terms of PSNR and SSIM. If the GPU is 
not available, the proposed BCD-Net can also run on CPU, where it 
requires 9.24 seconds, being competitive in time against the state-of-
the-art non-amortized methods, and being still faster than SAR, ALS, 
SGP, and TV.

The superior performance in terms of computational cost is a no-
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ticeable advantage of BCD-Net as an amortized method. The excessive 
computational cost of other methods renders them impractical for real-
world applications. BCD-Net’s efficiency during test time makes it a 
compelling tool for seamless integration with other DL approaches for 
classification, eliminating the need for database preprocessing before-
hand.

5.6. Classification performance

Finally, we evaluate the performance of BCD-Net on a breast cancer 
classification task. We use the best-performing model from the previous 
sections. Following the approach described in [24], we use a VGG19 
classifier as a benchmark, which is trained using four centers from the 
Camelyon-17 database. The fifth center, which was found to have larger 
color differences [24], is utilized for testing. VGG19 is trained and 
tested with the original images and the OD concentrations obtained by 
the compared methods. We also include the BCD-based augmentation 
method proposed by Tellez et al. [33], which is denoted by TEL.

Class-balanced patches were sampled from the annotated and nega-
tive WSIs in Camelyon-17, yielding approximately 110,000 patches for 
training and 55,000 for testing. VGG19 is trained for 100 epochs us-
ing 64 sample batches with batch normalization and a learning rate 
of 0.001, which is halved every 30 epochs. The area under the ROC 
curve (AUC), shown in Table 6, is calculated on the test set for the 
best-performing epoch during training for each method.

The proposed BCD-Net achieves an AUC of 0.9652, which outper-
forms the use of the original images and RUI, MAC, VAH, SAR, TV, 
and SGP. BCD-Net results are also competitive with the augmentation 
method in TEL. Although the best classification performance is obtained 
by the recent non-amortized method BKSVD, these results show that the 

proposed method is suitable for its use in classification tasks.
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Fig. 8. Zoomed-in sample from the left-bottom corner of the images in Fig. 7.(a) Depicts the observed H&E image from WSSB, (b) shows the corresponding ground 
truth single stain H-only and E-only images, and (c)-(l) show the separation obtained by the BCD methods. Hematoxylin and eosin separations are presented on the 
left and right-hand sides of each image, respectively.

Fig. 9. Mean quality metrics vs running time for deconvolving a 2000 × 2000 image. The proposed BCD-Net is marked in red.

Table 6

AUC performance of the VGG19 classifier for the proposed and competing methods using the OD concentrations of the H&E 
channels. Bold values indicate the highest performance.

Original (RGB) RUI MAC VAH ALS SAR TV SGP ZHE BKSVD TEL BCD-Net

0.9491 0.9417 0.9468 0.6614 0.9725 0.9642 0.9508 0.9650 0.9864 0.9879 0.9654 0.9652
11
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6. Conclusions and future work

In this paper, we have proposed a novel Deep Variational Bayesian 
Blind Color Deconvolution Neural Network (BCD-Net) for stain sep-
aration of histological images. BCD-Net combines DL with analytical 
Bayesian modeling to train a CNN by maximizing the Evidence Lower 
Bound of the observed optical density images and without a stain sep-
aration ground truth. The proposed model includes two subnetworks, 
C-Net and M-Net, that jointly estimate a posterior distribution for the 
color-vector matrix and the stain concentrations using maximum likeli-
hood in an amortized inference manner.

As other amortized methods for BCD have not been developed yet, 
the proposed method has been compared against nine non-amortized 
methods in the literature. While non-amortized methods typically 
achieve superior performance, BCD-Net shows promising results. It is 
competitive with the most used method in the literature for stain separa-
tion of different tissue types and breast cancer classification. Moreover, 
the amortized training of BCD-Net significantly improves computational 
efficiency compared to non-amortized models. Being trained without 
stain separation ground truth, this work mitigates the need for large la-
beled databases for DL BCD approaches and opens new research lines 
to interpretable processing of histological images using DL. Contrary to 
analytical non-amortized methods, the proposed BCD-Net can be com-
bined with DL classification approaches in end-to-end training [5,8], 
which will likely improve both stain separation and classification per-
formance.

The proposed model uses the maximum likelihood principles to esti-
mate the C-Net parameters, which keeps the model simpler but provides 
results that are still outperformed by non-amortized models. Adapt-
ing to our framework prior concentration models that correspond to 
smoothness constraints, as were utilized in the analytical methods in 
[11,23,25], as well as the fully automatic estimation of the model 
parameters, will be investigated in the future. This will, very likely, 
improve the performance of the proposed method in comparison with 
these amortized methods. Finally, the end-to-end training of amortized 
BCD and classification techniques will also be investigated.
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Appendix A. Acronyms

Table A.7

Abbreviations and definitions used in this paper.

Abbreviation Definition

ALS Method by Alsubaie et al. [3]

BCD Blind Color Deconvolution

BKSVD Bayesian K-Singular Value Decomposition [24]

BID Blind Image Deblurring

CAD Computer-Aided Diagnosis

CNN Convolutional Neural Network

DL Deep Learning

DNN Deep Neural Network

ELBO Evidence Lower Bound

H&E Hematoxylin and Eosin

MAC Method by Macenko et al. [19]

MSE Mean Square Error

OD Optical Density

PSNR Peak Signal to Noise Ratio

RUI Method by Ruifrok et al. [29]

SAR Simultaneous Auto-regressive [11]

SGP Super Gaussian Priors [25]

SSIM Structural Similarity

SVD Singular Value Decomposition

TV Total Variation [23]

VAH Method by Vahadane et al. [35]

WSSB Warwick Stain Separation Benchmark [3]

ZHE Method by Zheng et al. [42]
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