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The geodesic completeness of compact Lorentzian manifolds
admitting a timelike Killing vector field revisited:

two new proofs

Daniel de la Fuente

Abstract. Compact Lorentzian manifolds admitting a timelike Killing vector

field are shown to be complete by means of two different proofs to the original

one.

1. Introduction

Contrary to the Riemannian case, a compact Lorentzian manifold may be
geodesically incomplete (see for instance [8, p. 193], [9], [10]). This striking fact
motivated the search of sufficient assumptions under which compactness implies
(geodesically) completeness of such a manifolds or more generally of a compact
indefinite Riemannian manifold [10]. On the other hand, an homogeneous indefi-
nite Riemannian manifold needs not to be complete [8, p. 257]. However, in 1973,
J.E. Marsden proved that any compact indefinite homogeneous Riemannian man-
ifold must be complete [7], [1, Th. 4.2.22]. In Marsden’s result the key idea is to
show that the tangent bundle can be decomposed into a disjoint union of compact
subsets which are invariant under the geodesic flow. Thus, any integral curve of
the geodesic vector field remains in a compact subset of the tangent bundle, which
implies that it (and hence its projection on the manifold) can be defined on all the
real line.

It should be remarked that any tangent vector v at a point p of an homogeneous
semi-Riemannian manifold (M, g) can be extended to a globally defined Killing
vector field V . Note that if g

p
(v, v) < 0 then g(V, V ) < 0 near the point p.

However, V is not timelike everywhere, in general. On the other hand, recall that
a necessary and sufficient condition for a compact manifold to admit a Lorentzian
metric is the existence of a nowhere zero vector field [8]. Thus it is natural to link
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the completeness of a compact Lorentzian manifold with the existence of a suitable
timelike vector field.

In 1993, Y. Kamishima proved in that a compact Lorentzian manifold which
admits a timelike Killing vector field and has constant sectional curvature must
be complete [5]. His technique depends of the rich group machinery of spaces
of constant sectional curvature and it is completely different from Marsden’s one.
With respect to the curvature assumption in Kamishima’s result, B. Klinger proved
in 1996 that every compact Lorentzian manifold of constant sectional curvature c
must be complete [6], extending a previous result by Y. Carriére [3] when c = 0.
Moreover, note that there is no compact Lorentzian manifold (M, g) of constant
sectional curvature c > 0, which follows from Klinger’s theorem and a classical
result of E. Calabi and L. Markus [2] .

In 1995, A. Romero and M. Sánchez proved that a compact Lorentzian manifold
which admits a timelike conformal vector field must be complete [11]. Recall that a
vector field is called conformal if any of its (local) flows consists of (local) conformal
transformations. In particular, a Killing vector field is clearly conformal. The
existence of a timelike conformal vector field imposes a serious restriction on the
topology of an n-dimensional compact Lorentzian manifold, indeed, this implies
that a compact Lorentzian manifold is topologically a Seifert fiber space. However,
for a fixed topology the family of such Lorentzian metrics is very wide. In dimension
two, a complete description of all Lorentzian metrics on a 2-tori which admit a
nontrivial Killing vector field was given by M. Sánchez in [12].

The main aim of this note is to give two new proofs of the result in [11] in the
case Killing,

A compact Lorentzian manifold which admits a timelike Killing
vector field must be geodesically complete.

The two new proofs which follow could bring the researchers in analytical me-
chanics or second order ODEs on manifolds closer to this topic of Lorentzian ge-
ometry.

In Section 2 we will follow a different strategy from the one in [11]. In fact,
we will pay attention to two numbers associated to each geodesic γ, the first one
showing its causal character and the second one given by the conservation law (2.2).
Using each couple of these numbers, we will construct a compact subbundle of the
tangent bundle TM invariant under the geodesic flow and such that the velocity
vector field of γ lies within it at any value of its parameter. Finally, according also to
the causal character of the geodesics, we construct in Section 3 three subbundes of
TM , each of them invariant under the geodesic flow and under suitable assumptions
in order to apply Gordon’s approach, concluding the completeness of the restriction
of the geodesic vector field in each case.
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2. Hamiltonian approach à la Marsden

Let (M, g) be a compact Lorentzian manifold which admits a timelike Killing
vector field K. The geodesics of (M, g) can be characterized as solutions of the
Hamiltonian system given by

H : TM → R, H(p, v) =
1

2
g
p
(v, v).

for all (p, v) ∈ TM . Consider

(2.1) J : TM → R, J(p, v) = g
p
(Kp, v),

for all (p, v) ∈ TM . Taking into account that K is Killing, if γ is a geodesic in M ,
then we get

(2.2) J
(
γ(t), γ′(t)

)
= α.

for all t. Notice that the function J is the associated momentum function relative
to the (complete) infinitesimal generator K of the action [1, Sect. 4.2], and α ∈ R
depends on the geodesic γ in M . Moreover, the conservation law (2.2) is just the
Noether Theorem for the mechanical system.

Now, in (M, g) consider the time orientation defined byK. Thus, let us consider
a future pointing unit timelike geodesic in (M, g), i.e., a geodesic γ : I →M , 0 ∈ I,
with γ(0) = p ∈ M and γ′(0) = v ∈ TqM , g

p
(v, v) = −1 and g

p
(Kp, v) < 0. We

may assume g(K,K) < −1 (otherwise, we may change K to the Killing vector λK
with a suitable positive number λ).

The curve in the tangent bundle TM given by t 7−→ (γ(t), γ′(t)) lies in the
following subbundle of TM

TMα =
⋃
p∈M
TMα

p , TMα
p := {v ∈ TpM : gp(v, v) = −1, J(p, v) = α},

where α = gp(Kp, v) < 0. Notice that the submanifold TMα of TM is invariant
under the geodesic flow. If a unit timelike geodesic is past pointing, changing its
parameter by its opposite we have a geodesic under the previous assumptions.

For each p ∈ M , TMα
p is the intersection of the future component of the

hyperbolic space in TpM and the spacelike affine hyperplane {v ∈ TpM : J(p, v) =
α}. Thus, TMα

p is homeomorphic to an (n− 2)-dimensional Euclidean sphere and,
in particular, a compact subset of TpM . Consequently, TMα is also compact and
then the restriction of the geodesic vector field on TMα is complete. Therefore, γ
may be extended as a geodesic on all R.

A similar argument works when the geodesic γ is assumed to be spacelike or
(future pointing) lightlike, yielding respectively the subbundles of TM

SMβ := {(p, v) ∈ TM : g
p
(v, v) = 1, J(p, v) = β ∈ R},

LMε := {(p, v) ∈ TM : g
p
(v, v) = 0, J(p, v) = ε < 0}.
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Both of them are invariant under the geodesic flow. The subspace {v ∈ TpM :
g
p
(v, v) = 1} of TpM is diffeomorphic to an (n − 1)-dimensional De Sitter space-

time whereas {v ∈ TpM : gp(v, v) = 0, gp(Kp, v) < 0} is diffeomorphic to an
(n− 1)-dimensional future light cone. Then, the intersection with the correspond-
ing spacelike affine hyperplane is also homeomorphic to an (n − 2)-dimensional
Euclidean sphere and, in particular, a compact subset of TpM . Consequently, the
corresponding fiber bundles are compact, which ends the proof.

3. Approach à la Gordon

First recall the following technical result [4] (see also [1, Lemma 2.1.20 ]) to be
used later.

Lemma 3.1. Let X ∈ X(N) be a vector field on a manifold N . Suppose that

(i) There exists a function f ∈ C∞(N) such that
∣∣Xp(f)

∣∣ 6 δ1 |f(p)|, for any
p ∈ N , where δ1 is a non-negative constant.

(ii) There exists a proper function h ∈ C∞(N) such that |h(p)| 6 δ2 |f(p)|,
for any p ∈ N , where δ2 is a positive constant.

Then, X is complete.

Now, as in Section 2, let (M, g) be a compact Lorentzian manifold with a
timelike Killing vector field K. Formula (2.2) suggests to take N = TM and
f = J , the momentum function, in order to use Lemma 3.1. In fact, assumption (i)
is automatically satisfied by X the geodesic vector field, with δ1 = 0. However, no
smooth function h : TM → R satisfying (ii) is proper. Note that if such a function
does exist then it takes the zero value. Let p

0
be a fixed arbitrary point of M and

consider K⊥p
0

= {v ∈ Tp0M : g
p0

(Kp0
, v) = 0}. Clearly, K⊥p

0
⊂ h−1(0) and K⊥p

0
is

closed and noncompact. Therefore, h is not proper. The following argument is a
way to avoid this inconvenient.

Consider N = PMε :=
⋃
p∈M
PMε

p , ε = −1, 0,+1, where

PMε
p := {v ∈ TpM : g(v, v) = ε}, for ε = −1,+1,

PM0
p := {v ∈ TpM : g(v, v) = 0, gp(Kp, v) < 0}.

Note that the subbundle PMε of TM is invariant under the geodesic flow.
Denote by Gε the restriction on PMε of the geodesic vector field G.

In order to apply Lemma 3.1, we take f, h : PMε → R defined as

f(p, v) = h(p, v) := J(p, v),

for all (p, v) ∈ PMε. It is not difficult to see that f is proper.

We have

Gε(f)(p,v) = g
(D
dt

∣∣∣
t=0

(K ◦ γ)(t), γ′(t)
)

= 0,

where γ is the geodesic satisfying γ(0) = p and γ′(0) = v. Now, Lemma 3.1 with
δ1 = 0 and δ2 = 1 allow us to end the proof.
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