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ABSTRACT

Ridge regression is the alternative method to ordinary least squares, which is mostly

applied when a multiple linear regression model presents a worrying degree of collinearity.

A relevant topic in ridge regression is the selection of the ridge parameter, and different

proposals have been presented in the scientific literature. Since the ridge estimator is biased,

its estimation is normally based on the calculation of the mean square error (MSE) without

considering (to the best of our knowledge) whether the proposed value for the ridge parameter

really mitigates the collinearity. With this goal and different simulations, this paper proposes

to estimate the ridge parameter from the determinant of the matrix of correlation of the

data, which verifies that the variance inflation factor (VIF) is lower than the traditionally

established threshold. The possible relation between the VIF and the determinant

of the matrix of correlation is also analyzed. Finally, the contribution is illustrated

with three real examples.
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1. INTRODUCTION

To study the linear relationships among different variables, there is the ordinary least squares

(OLS) estimator, which is the best linear unbiased estimator (BLUE), Duzan and Shariff

(2015). According to Kibria and Banik (2016), there can be model specification errors such

as the omission of relevant variables, inclusion of unnecessary explanatory variables or highly

inter-correlated explanatory variables. The existence of multicollinearity is a serious issue

because the estimation may be unstable, and the variance of the estimators may be large

compared to the values of the estimated parameters, which can be insignificant or have the

wrong sign (Salmerón Gómez et al. (2016)).

The problem of multicollinearity can be mitigated using numerous methods such as ridge

regression that is one of the most applied methodology to estimate models with collinearity.

This method, which was developed by Hoerl and Kennard (1970a,b), introduces a parameter

k ≥ 0, known as the ridge parameter, in the diagonal of the matrix XtX to avoid the

singularity of this matrix (Garćıa et al. (2017)). According to Kibria and Banik (2016),

Hoerl and Kennard found that there is a nonzero value of k for which the mean squared error

(MSE) of the ridge regression estimator is smaller than the variance of the OLS estimator.

Many authors have proposed different algorithms to obtain the biasing parameter k ( see

Kibria and Banik (2016) for a detailed list), but the traditional k value in the literature is

the one proposed by Hoerl et al. (1975), see for example Halawa and El Bassiouni (2000).

However, these k values do not always mitigate the collinearity ignoring the indications of

Marquardt (1970) that the maximum variance inflation factor (VIF) must be lower than 10.

The main goal of this paper is to propose a value of the ridge parameter that mitigates the

collinearity in a specified model. To that end, we will follow the work of Garćıa et al. (2017),

who analyze the relation of the ridge factor (k) with the squared coefficient of correlation

(ρ2) in a model of two standardized independent variables, and conclude that this relation is

linear. In that case, it is verified that ρ2 = 1−det(R), where det(R) denotes the determinant

of the matrix of correlations, R, of the independent variables. To obtain results in line with
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this particular case, this paper will work with 1− det(R).

To detect the multicollinearity in a specific model, the variance inflation factor (VIF) is

widely used. Thus, it is known that VIF> 10 implies collinearity. However, there are other

options such as finding the value of the determinant of the correlation matrix.

Thus, taking into account that the VIFs can be found on the main diagonal of the inverse

of the matrix of correlations, R, it is possible to obtain the following relation between the VIF

and the determinant of the correlation matrix (see, for example, Fox and Monette (1992)):

V IFi =
det(Rii)

det(R)
, ∀i, (1)

where Rii is the matrix obtained after eliminating the file and column i of R. In this case,

from (1) is obtained that det(R) = det(Rii) · V IF−1i , and consequently, a V IFmax > 10 can

be expressed as det(R) < 0.1 · det(Rii).

Finally, since the determinant of a matrix of correlation is between 0 and 1, it is verified

that:

V IFmax > 10⇒ det(R) < 0.1. (2)

For three explanatory variables (two independent variables and a constant), it can be

demonstrated that det(R) = 1 − ρ2 = 1
V IF

. Then, it is evident that if V IF > 10 then

det(R) < 0.1. That is, if the determinant of the correlation matrix is less than 0.1,

multicollinearity is likely present in the specified model.

The second principal objective of this work is to generalize the expression (2) taking into

account the number of variables and observations of the multiple linear regression. Before

presenting the contribution of this paper, we first present the ridge regression (RR) in Section

2. Here, we also briefly specify the MSE and VIF for the RR, which have different formulas

from those in the traditional OLS estimation (subsections 2.1 and 2.2). In subsection 2.3,

we present some criteria to select the ridge factor. Then, Section 3 presents a Monte Carlo

simulation that helps us to obtain our k values (subsection 3.1). The relation between

bias and variance for the different values of k is analyzed in subsections 3.2 and

3.3. Finally, the full contribution is shown with three empirical examples in Section 4, and

the conclusions and future lines of research are presented in Section 5.
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2. RIDGE REGRESSION

Hoerl and Kennard (1970b) proposed an estimation process to mitigate the collinearity

problem, which appears in a multiple regression model when the explanatory or independent

variables are not orthogonal. This process consists of modifying the matrix XtX by adding a

positive and tiny value in its diagonal. In other terms, suppose the following multiple linear

regression model:

Y = Xβ + u, (3)

where X is nxp (range p), β is px1, and the random perturbance u is nx1 and spherical

(E[u] = 0; V ar(u) = σ2I, 0 a zero vector and I being the identity matrix).

To avoid the instability of the ordinary least squares (OLS) estimator, which is determined

by:

β̂ = (XtX)−1XtY,

they suggest to use the ridge estimator instead of the OLS estimator1. The ridge estimator

can be expressed as:

β̂(k) = (XtX + kI)−1XtY, (4)

where k is known as the ridge factor, and k ≥ 0.

Considering Zk = (XtX + kI)−1XtX, we can verify that:

• β̂(k) = Zkβ̂, ∀k ≥ 0.

• β̂(k) is a biased estimator of β, except for k = 0: E[β̂(k)] = ZkE[β̂] = Zkβ 6= β.

• V ar(β̂(k)) = ZkV ar(β̂)Zt
k = σ2(XtX + kI)−1XtX(XtX + kI)−1.

Marquardt (1970) said that (4) minimizes the sum of squared residuals (SSR), which is

1The condition number (CN) of the matrix XtX+kI (k > 0) is less than the CN for matrix XtX (Casella

(1985)). Its inverse is sounder.
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expressed by:

SSR(k) = e(k)te(k) = (Y −Xβ̂(k))t(Y −Xβ̂(k))

= SSR + k2β̂(k)t(XtX)−1β̂(k),

where SSR is the sum of squared residuals of model (3). SSR(k) increases monotonically in k,

and because β̂(k)t(XtX)−1β̂(k) is a positive-definite cuadratic form, it can be demonstrated

that SSR(k) > SSR for k > 0.

2.1. MEAN SQUARE ERROR IN RIDGE REGRESSION

The estimated parameters obtained from (4) are biased estimators of β if k 6= 0; thus, it is

interesting to calculate their mean squared error (MSE). For an estimator β̃ of β, the MSE

is obtained using the following expression:

MSE(β̃) = E[(β̃ − β)t(β̃ − β)] = tr(V ar(β̃)) + (E[β̃]− β)t(E[β̃]− β). (5)

It is always positive, and a smaller value is better.

Starting from expression (3), the estimation in (4) can be expressed as β̂(k) = Zk · β̂,

thus following McDonald (2010)2, the variance and its trace can be expressed as:

V ar
(
β̂(k)

)
= σ2 · Γ ·D λ

(λ+k)2
· Γt.

tr
(
V ar

(
β̂(k)

))
= tr(σ2 · Γ ·D λ

(λ+k)2
· Γt) = σ2tr(D λ

(λ+k)2
· Γt · Γ)

= σ2

p∑
j=1

λj
(λj + k)2

. (6)

Meanwhile, E[β̂(k)] = Zk · β; then:

(E[β̂(k)]− β)t(E[β̂(k)]− β) = βt(Zk − I)t(Zk − I)β

= βt · Γ ·D k2

(λ+k)2
· Γt · β = k2 ·

p∑
j=1

α2
j

(λj + k)2
, (7)

2Note that XtX = Γ ·Dλ ·Γt, where Γ are the eigenvector matrix of XtX; thus, Γt = Γ−1, and λ1, . . . , λp

are its eigenvalues, being Dλ = diag(λ1, . . . , λp).
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where αj, for j = 1, . . . , p are the elements of vector α = Γt · β.

From (6) and (7), the MSE in the ridge regression is:

MSE
(
β̂(k)

)
= σ2 ·

p∑
j=1

λj
(λj + k)2

+ k2 ·
p∑
j=1

α2
j

(λj + k)2
=

p∑
j=1

σ2 · λj + k2 · α2
j

(λj + k)2
. (8)

Then, we can obtain the value of MSE from the estimated values of σ2 and β.

In expression (8), Hoerl and Kennard (1970b) distinguished between the

variance of the estimate β̂(k), denoted as γ1(k), and the squared bias of the

estimated β̂(k), denoted as γ2(k). That is to say:

MSE
(
β̂(k)

)
= γ1(k) + γ2(k),

It is verified that γ1(k) is decreasing in k (converges to zero) and γ2(k) is

increasing. Thus, MSE
(
β̂(k)

)
presents a horizonal asymptote given by:

lim
k→+∞

MSE
(
β̂(k)

)
=

p∑
j=1

α2
j = αtα = βtβ.

Indeed, the asymptotic behaviour of γ1(k) leads to a value of k from which the

MSE
(
β̂(k)

)
depends on γ2(k) in a high percentage.

Finally, by deriving the expression (8) in terms of k, we obtain:

∂

∂k
MSE

(
β̂(k)

)
= 2 ·

p∑
j=1

k · αj − σ2

(λj + k)3
· λj. (9)

From (9), we obtain that MSE
(
β̂(k)

)
is increasing if k ≥ max

j=1,...,p

{
σ2

α2
j

}
, and decreasing if

k ≤ min
j=1,...,p

{
σ2

α2
j

}
. However, it is not possible to algebraically obtain the turning points; thus,

it is not possible to analyze the monotony of MSE
(
β̂(k)

)
due to the different monotony

of γ1(k) and γ2(k). Despite these difficulties, this expression has been used to estimate the

ridge parameter (e.g., Hoerl and Kennard (1970b) or Hoerl et al. (1975)).

6



2.1.1 BIAS IN RIDGE REGRESSION

From expression (8), it is verified that

MSE
(
β̂(k)

)
= σ2 ·

p∑
j=1

1

λj
+ k ·

p∑
j=1

(α2
j · λj − σ2) · k − 2 · λj · σ2

(λj + k)2 · λj

= MSE
(
β̂
)

+ bias(k), (10)

where bias(0) = 0, bias(k) < 0 if k < minj=1,...,p

{
2·λj ·σ2

α2
j ·λj−σ2

}
and bias(k) > 0 for

k > maxj=1,...,p

{
2·λj ·σ2

α2
j ·λj−σ2

}
. For minj=1,...,p

{
2·λj ·σ2

α2
j ·λj−σ2

}
< k < maxj=1,...,p

{
2·λj ·σ2

α2
j ·λj−σ2

}
is

not possible to conclude.

Furthermore, if bias(k) < 0 then MSE
(
β̂(k)

)
< MSE

(
β̂
)

and if bias(k) > 0 then

MSE
(
β̂(k)

)
> MSE

(
β̂
)

.

Note that ∂
∂k
bias(k) = ∂

∂k
MSE

(
β̂(k)

)
.

2.2. VARIANCE INFLATION FACTOR IN RIDGE REGRESSION

After the ridge regression is applied, it is necessary to test whether the initial collinearity

problem has been mitigated. As we have stated in the Introduction, to detect the problem,

the variance inflation factor (VIF) is widely used.

Garćıa et al. (2015) show that many studies have some errors in the calculation of VIFs

associated to ridge regression. Garćıa et al. (2016) proposed an alternative methodology

to properly measure it. This proposal will be used in this work, considering that the

multicollinearity has been mitigated when the value of the VIF associated to ridge

regression, VIF(k), is less than 10.

2.3. SOME CRITERIA FOR SELECTING THE RIDGE FACTOR

Hoerl and Kennard (1970b) proposed the use of the trace of ridge estimators, which consists

of representing βi(k) for k ≥ 0. As β(k)tβ(k) decreases in k (see Marquardt (1970)), it can

be assumed that there is a set of values of ridge factor k, which stabilizes the estimation.

The appropriate k is among these values.
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In parallel, the most used criterion in choosing the k parameter is the following (Hoerl

et al. (1975)):

kHoerl = p · σ̂
2

β̂
t
β̂
. (11)

The likelihood of giving estimators with smaller MSEs than the OLS estimators for this k is

greater than 0.5.

However, this is not the only criterion in selecting k. In the literature, many authors have

developed different expressions to estimate the ridge parameter. Starting from Kibria and

Banik (2016), there are 25 criteria in addition to the previous one. Tables 1 and 2 present

these different criteria.

At this point, it is important to note that with all of these methods, the multicollinearity

is not guaranteed to be mitigated. Thus, following the proposal from Marquardt (1970) and

Garćıa et al. (2017) and considering the previous subsection, we have simulated a data set to

obtain the smallest possible value of k that makes the VIFs of the ridge regression, VIF(k),

smaller than 10.

3. MONTE CARLO SIMULATION

3.1. Relation between k and det(R) and between det(R) and V IF

In this subsection, we simulate values from the following:

Xi =
√

1− ξ2 · Zi + ξ · Zp,

where i = 2, . . . , p with p = 3, 4, 5, Zi ∼ N(µ, σ) with µ ∈ {1, 2, 3, 4, 5} and σ2 ∈

{0.1, 0.2, 0.3, 0.4, . . . , 3}, ξ ∈ {0.8, 0.81, 0.82, 0.83, . . . , 0.99} and n ∈ {15, 20, 25, 30, . . . , 200}.

This method to generate independent variables with different grades of collinearity (ξ is

specified so that the correlation between any two independent variables is given by ξ2) has

been applied, e.g., by Gibbons (1981), McDonald and Galarneau (1975), Kibria (2003) or

Salmerón et al. (2018).

The matrix X = [X1 X2 . . . Xp] is constructed, where X1 is a vector with ones (which

represents the independent term in model (3)). Then, for every variable, the minimum value
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Table 1: Ridge parameter: different criteria for choosing k

Reference Notation Formula

Hoerl and Kennard (1970b) khk
σ̂2

β̂2
max

Hoerl et al. (1975) kHoerl p
σ̂2

β̂tβ̂

Hocking et al. (1976) kh σ̂2

∑p
i=1

(
λiβ̂i

)2
(∑p

i=1 λiβ̂
2
i

)2
Lawless and Wang (1976) klw

pσ̂2

β̂tXtXβ̂

Nomura (1988) kn
pσ̂2

p∑
i=1

(β̂2
i

)/2 + λi

(
β̂2
i

σ̂2

)1/2


Kibria (2003)

kamk
1

p

p∑
i=1

σ̂2

β̂2
i

kgmk
σ̂2(∏p

i=1 β̂
2
i

)1/p
kmedk med

(
σ̂2

β̂2
i

)

Khalaf and Shukur (2005)

kks
λmaxσ̂

2

(n− p) σ̂2 + λmaxβ̂2
max

kamks
1

p

p∑
i=1

λiσ̂
2

(n− p) σ̂2 + λiβ̂2
i

kmaxks max

(
λiσ̂

2

(n− p) σ̂2 + λiβ̂2
i

)

kmedks med

(
λiσ̂

2

(n− p) σ̂2 + λiβ̂2
i

)
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Table 2: Ridge parameter: different criteria for choosing k (cont.)

Reference Notation Formula

Muniz and Kibria (2009)

kmk1 max

 1√
σ̂2/β̂2

i



kmk2 max

(√
σ̂2

β̂2
i

)

kmk3

 p∏
i=1

1√
σ̂2/β̂2

i

1/p

kmk4

(
p∏
i=1

σ̂2

β̂2
i

)1/p

kmk5 med

 1√
σ̂2/β̂2

i



kmk6 med

(√
σ̂2

β̂2
i

)

Dorugade and Kashid (2010) kdk max

(
0, kHoerl −

1

n (VIFi)max

)

Khalaf (2012) kf khk +
2

(λmax + λmin)
t

Muniz et al. (2012)

km1
max

(
(n− p) σ̂2 + λmaxβ̂

2
i

λmaxσ̂2

)

km2 max

(
λmaxσ̂

2

(n− p) σ̂2 + λmaxβ̂2
i

)

km3

(
p∏
i=1

(n− p) σ̂2 + λmaxβ̂
2
i

λmaxσ̂2

)1/p

km4

(
p∏
i=1

λmaxσ̂
2

(n− p) σ̂2 + λmaxβ̂2
i

)1/p

km5 med

(
(n− p) σ̂2 + λmaxβ̂

2
i

λmaxσ̂2

)
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Figure 1: Graphic representation of k according to 1 − det(R) (right hand) and det(R)

according to VIFmax (left hand)

of k that makes the VIF associated with the ridge regression less than 10 and the determinant

of the correlation matrix of X are calculated.

Since this calculation is repeated three times for each value of p, 1026000 values are

obtained, which are presented in Figure 1. Figure 2 shows k according to 1 − det(R) after

deleting the values of k = 0 (when the collinearity in the model it is not an issue of concern)3.

This graphical representations suggest the following relationships:

kexp = β · e1−det(R) + ut, (12)

klineal = γ · (1− det(R)) + ut, (13)

ksq = δ1 · (1− det(R))2 + δ2 · (1− det(R)) + ut, (14)

det(R) = α · 1

VIFmax

+ vt, (15)

After adding the sample size (n) and number of variables (p), these estimations are presented

3As we have said in the Introduction, we use 1− det(R) because for p = 3, this value coincides with the

value of ρ2. Then, the results are comparable to the findings in Garćıa et al. (2017)
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Figure 2: Graphic representation of k according to 1− det(R) after deleting values k = 0
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Table 3: Estimation of model (12) for k 6= 0

Variable Estimation Typical deviation p-values

e1−det(R) 0.006639 0.00007381 < 2 · 10−16

n -0.00001241 0.0000005299 < 2 · 10−16

p 0.005745 0.00004296 < 2 · 10−16

R2 0.807 F3,479191 667700

Table 4: Estimation of model (13) for k 6= 0

Variable Estimation Typical deviation p-values

1− det(R) 0.01837 0.0002013 < 2 · 10−16

n -0.00001262 0.0000005298 < 2 · 10−16

p 0.005678 0.00004309 < 2 · 10−16

R2 0.8071 F3,479191 668100

in Tables 3-6.

Using the information in these tables, Figure 3 shows the estimations obtained for

k considering that det(R) ∈ {0, 0.1, 0.2, . . . , 1}, n ∈ {15, 20, 25, . . . , 200} and p ∈

{3, 4, 5, . . . , 10}. Note that the estimations for kexp and klineal are notably similar, and ksq

can take negative values. Analogously, Table 7 provides the maximum and minimum values

obtained for kexp, klineal and ksq. These results seem to indicate that the estimations of k

obtained from the quadratic relation may be not adequate in some cases.

Moreover, to test whether the coefficient of 1
VIFmax

is significantly lower than 1, we obtain

that the null hypothesis of equality is not rejected because

texp =
|1.013− 1|
0.0003066

= 42.40052 > 1.959966 = t1025997(0.975).

With these results, it is possible to assume that our initial assumption is maintained:

VIF > 10 implies that det(R) < 0.1. Furthermore, with the results in Table 6, if we consider

the sample size and number of independent variables, we can obtain Table 8. This last table
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Table 5: Estimation of model (14) for k 6= 0

Variable Estimation Typical deviation p-values

(1− det(R))2 0.7922 0.001482 < 2 · 10−16

1− det(R) -0.6901 0.001335 < 2 · 10−16

n -0.000007567 0.0000004195 < 2 · 10−16

p -0.01081 0.00004599 < 2 · 10−16

R2 0.8791 F4,479190 871200

Table 6: Estimation of model (15)

Variable Estimation Typical deviation p-values

1
VIFmax

1.013 0.0003066 < 2 · 10−16

n 0.00008626 0.000000578 < 2 · 10−16

p -0.01384 0.00001732 < 2 · 10−16

R2 0.9411 F3,1025997 5463000

Table 7: Maximum and minimum values of kexp, klineal and ksq for det(R) ∈

{0, 0.1, 0.2, . . . , 1}, n ∈ {15, 20, 25, . . . , 200} and p ∈ {3, 4, 5, . . . , 10}

Minimum Maximum

kexp 0.021392 0.07531

klineal 0.0145 0.07496

ksq -0.2598 0.0695
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Figure 3: Graphic representation of kexp, klineal and ksq (top to bottom) for det(R) ∈

{0, 0.1, 0.2, . . . , 1}, n ∈ {15, 20, 25, . . . , 200} and p ∈ {3, 4, 5, . . . , 10}
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Table 8: Values of det(R) when VIF = 10 for different sample sizes and numbers of

independent variables.

p \ n 15 45 75 105 135 165 195

2 0.0749139 0.0775017 0.0800895 0.0826773 0.0852651 0.0878529 0.0904407

3 0.0610739 0.0636617 0.0662495 0.0688373 0.0714251 0.0740129 0.0766007

4 0.0472339 0.0498217 0.0524095 0.0549973 0.0575851 0.0601729 0.0627607

5 0.0333939 0.0359817 0.0385695 0.0411573 0.0437451 0.0463329 0.0489207

6 0.0195539 0.0221417 0.0247295 0.0273173 0.0299051 0.0324929 0.0350807

shows that the values of det(R) diminish when we have more variables and fewer observations,

which is consistent with Table 6, where the estimated parameter of n is positive, and the

sign of p parameter is negative.

The second goal of this paper is achieved from this table. Thus, it will be possible to

conclude that the collinearity is worrying if the model presents a det(R) lower that the

values presented in this table (values of det(R) that are not collected in Table 8 can be

easily obtained from estimations provided in Table 6).

3.2. Analysis of the squared bias of the estimated β̂(k)

In this subsection, 15200 simulations have been carried out by following

subsection 3.1 but considering that ξ ∈ {0.965, 0.967, 0.968, . . . , 0.999} to ensure

worrying collinearity. Indeed, the following model has been generated:

Y = β0 + β1 · Z1 + · · ·+ βp · Zp + u,

where u ∼ N(0, 1) and βi with i = 0, 1, . . . , p is obtained randomly from the set

{−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5}.

The percentage of MSE caused by the component γ2(k) has been calculated

for each simulation for the estimators of k proposed in this paper (kexp, klineal and
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Table 9: Percentage of cases where a(k∗)− a(kHoerl) < 0

k∗ p=3 p=4 p=5

kexp 21.483% 5.178% 1.339%

klineal 21.459% 5.172% 1.3408%

ksq 25.723% 3.467% 1.263%

ksq) in the following way:

δ(k) =
γ2(k)

MSE
(
β̂(k)

) · 100, (16)

The value proposed by Hoerl et al. (1975), kHoerl will be considered the

reference value to analyze the behaviour in relative terms of the squared bias of

the estimated β̂(k) for the estimations of k given by kexp, klineal and ksq.

Table 9 presents for different values of p, the percentage of cases where

the difference a(k∗) − a(kHoerl) is negative, it is to say, where the percentage of

variability of the MSE caused by γ2(k) is lower for values kexp, klineal and ksq.

Note that these percentages diminish as p increases, which suggests that as the

number of independent variables in the model increases, so does the distance

between these estimates.

Table 10 presents the mean and the standard deviation for the difference

when it is positive, it is to say, when the percentage of MSE caused by γ2(k) is

higher in the estimations proposed in this paper. In this case, the percentage

increases between 32% and 46% approximately depending on the value of p. It is

to say, looking for an estimator of k to mitigate the approximate multicollinearity

supposes an increase in relative terms of the squared bias of the estimated β̂(k)

of approximately 46% in the worst case analyzed.
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Table 10: Expected value of a(k∗) − a(kHoerl) when the difference is positive (the standard

deviation in parentheses)

k∗ p=3 p=4 p=5

kexp 32.2909% (31.416%) 38083% (32.886%) 45.177% (33.3522%)

klineal 32.88% (31.41%) 38.10% (32.889%) 45.158% (33.522%)

ksq 39.245% (35.383%) 46.534% (33.512%) 46.109% (33.515%)

Table 11: Analysis of bias(k) for p = 3

k∗ k∗ < minj=1,...,paj minj=1,...,paj < k∗ < maxj=1,...,paj maxj=1,...,paj < k∗

kexp 16.835% 82.48% 0.68%

klineal 16.822% 82.493% 0.684%

ksq 25.907% 72.598% 1.49%

3.3. Analysis of bias(k)

In this subsection, 15200 simulations have been carried out by following

subsection 3.2. Values of kexp, klineal, ksq and aj =
2·λj ·σ2

α2
j ·λj−σ2 (where σ2 is replaced

by its estimates) have been calculated for each simulation. Tables 11 to 13 show

the results for p = 3, 4, 5, respectively. Note that it is not possible to conclude in

a high percentage of cases and that this percentage increases as p increases.

It was also calculated the value of k, kcritical, from which MSE
(
β̂(k)

)
changes

from being lower than MSE
(
β̂
)

to being higher. Table 14 shows the percentage

of cases where kexp, klineal and ksq are lower than kcritical, it is to say, the

Table 12: Analysis of bias(k) for p = 4

k∗ k∗ < minj=1,...,paj minj=1,...,paj < k∗ < maxj=1,...,paj maxj=1,...,paj < k∗

kexp 2.48% 96.532% 0.986%

klineal 2.467% 96.546% 0.986%

ksq 1.611% 95.96% 2.427%
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Table 13: Analysis of bias(k) for p = 5

k∗ k∗ < minj=1,...,paj minj=1,...,paj < k∗ < maxj=1,...,paj maxj=1,...,paj < k∗

kexp 0.519% 97.986% 1.49%

klineal 0.519% 97.986% 1.493%

ksq 0.473% 97.861% 1.664%

Table 14: Percentage of cases where k∗ < kcritical, it is to say, MSE
(
β̂(k∗)

)
< MSE

(
β̂
)

k∗ p=3 p=4 p=5

kexp 27.355% 19.69% 14.75%

klineal 27.355% 19.657% 14.75%

ksq 37.934% 14.151% 14.75%

percentage of cases where bias(k∗) < 0 and then MSE
(
β̂(k∗)

)
< MSE

(
β̂
)

with

k∗ = kexp, klineal, ksq.

Since values kexp, klineal and ksq are calculated to obtain an associated V IF

lower than 10, these results have to be interpreted as the percentage of cases

where the MSE associated to kexp, klineal and ksq is lower than the MSE obtained

by OLS when the collinearity is mitigated.

By comparing these values with the values provided by Hoerl et al. (1975),

who stated that the use of the ridge estimator with biasing parameter ka =

p · σ̂2

β̂
t
β̂
has a probability greater than 0.5 of producing estimates with a smaller

mean square error than least squares, it is noted that the mentioned probability

diminishes when the mitigation of collinearity is imposed as a condition. Further,

Table 14 shows that the percentages diminish as p increases. This conclusion

contrasts with the results obtained by Hoerl et al. (1975), who stated that the

probability of a smaller MSE using ka increases as p increases.
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4. EXAMPLE

The contribution of this paper is illustrated in this section with the application of the

proposed methodology to three different real datasets with different numbers of independent

variables. Then, the application of the following three estimations proposed in this paper

kexp = 0.006639 · e1−det(R) − 0.00001241 · n+ 0.005745 · p, (17)

klineal = 0.01837 · (1− det(R))− 0.00001262 · n+ 0.005678 · p, (18)

ksq = 0.7922 · (1− det(R))2 − 0.6901 · (1− det(R))− 0.000007567 · n

−0.01081 · p, (19)

are compared with other proposals in the literature and summarized in Tables 1 and 2.

4.1. Mortality rate (p = 3)

Since this work is the natural extension of Garćıa et al. (2017), the goal of this first example

is to compare the estimations of k in Garćıa et al. (2017) with this new analysis. Garćıa

et al. (2017) presented the example used by McDonald and Schwing (1973), where the

mortality rate is related to the nitrogen oxide pollution potential and the hydrocarbon

pollution potential (p = 3) for 60 cities (n = 60). Both independent variables present a

coefficient of correlation ρ of 0.984. This model presents a VIF of 31.502, which denotes

severe multicollinearity.

In this case, the estimation of k was 0.0372 with a VIF of 9.9999, whereas from expressions

(17)-(19), the following values are obtained:

kexp = 0.0339732, klineal = 0.03406366, ksq = 0.04162561,

whose VIFs are 10.59599, 10.57821 and 9.289162, respectively.

A better behavior for the estimation of k was provided by Garćıa et al. (2017), which is

expected because the simulation was exclusively performed for p = 3.

Furthermore, considering the results in Table 6, we obtain the following:

d̂et(R) = 1.013 · 0.1 + 0.00008626 · 60− 0.01384 · 3 = 0.0649556.

20



In other words, in the case of 60 observations, 3 explanatory variables and VIF less than

10, we will have the determinant of the correlation matrix less than 0.0649556. Considering

only det(R) = 0.031744, we can conclude that the collinearity in this case is worrisome.

4.2. CO2 emissions in China (p = 4) and number of people employed (p = 5)

With the following two examples, we attempt to compare the estimations of k proposed in

this work with other estimations in the literature (summarized in Tables 1 and 2). On the

one hand, the VIF will be used to check whether the collinearity has been mitigated; on the

other hand, a preference criterion based on the MSE will be established.

The two following datasets will be applied:

• Data from China (1990-2014)4 for the CO2 emissions (dependent variable), population,

per capita GDP and industrialization (% of GDP).

• Data from Longley (1967) (1947-1962)5 for the number of employed people (dependent

variable), number of unemployed people, number of people in the armed forces,

non-institutionalized population aged 14 years or over and GNP implicit price deflator.

For the China dataset, we have 25 observations and 4 explanatory variables (n = 25 and

p = 4) and the following estimations for the variance of the random disturbance, coefficient

of the regressor, eigenvalues of the matrix XtX and determinant of the matrix of correlations:

σ̂2 = 0.00192444 , β̂i =


157.833822

−7.675747

1.421072

1.864854

 , λi =


13082.34

8.329007

0.01033608

0.000005995894

 , det(R) = 0.0219826.

These values will be applied to calculate different estimations in Table 15. In addition, it is

possible to note that

d̂et(R) = 1.013 · 0.1 + 0.00008626 · 25− 0.01384 · 4 = 0.0480965.

4Dataset extracted from the World Bank website. All data are expressed in logarithms.
5Dataset available in R-project (longley data).
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Because det(R) = 0.0219826 < 0.0480965 = d̂et(R), we can conclude that there is worrisome

collinearity. This conclusion is supported by the values of the VIFs: 28.62464, 28.37358, and

1.606269.

For the dataset from Longley (1967), we have 16 observations and 5 explanatory variables

(n = 16 and p = 5) and the following values applied to obtain different estimations in Table

15:

σ̂2 = 0.3215902 , β̂i =



13, 781314004

−0, 012412375

−0, 005968381

0, 306601491

0, 207046452


, λi =



3192925

113270.6

4559.912

132.2974

0.006778464


, det(R) = 0.007661552.

As before, we obtain:

d̂et(R) = 1.013 · 0.1 + 0.00008626 · 16− 0.01384 · 5 = 0.03348016,

so det(R) = 0.007661552 < 0.03348016 = d̂et(R); thus, the collinearity is worrying and is

also supported by the values of the VIFs: 3.1476, 2.497795, 34.5883, and 35.97075.

Table 15 shows the k estimation values, as well as the maximum value of VIF and the

value of MSE for both datasets. The values of VIFmax and MSE that correspond to the

values of k out of the interval [0, 1] have been omitted. The values of k that correspond to

VIFmax less than 10 have been highlighted. Note the following:

• For the CO2 emissions in the China dataset: kexp, klineal and ksq have a higher MSE

than the one of OLS, but they are the estimations of k corresponding to a maximum

VIF below 10. Furthermore, considering the results in Table 16, for k > 0.007899581,

MSE
(
β̂(k)

)
is increasing; thus, it easily exceeds the value given by OLS.

• For the dataset of the number of employed people: the estimations of k that correspond

to a VIF below 10 are kexp, klineal, k
max
ks , kmk3 , kmk5 , km3 and km5 . All of these

estimations present a MSE higher than that of OLS, but, among them, the proposed

estimations in this paper (kexp and klineal) have the lowest MSE.
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Table 15: Values of VIFmax and MSE for different k

China Longley (1967)

k value VIFmax(k) MSE(k) k value VIFmax(k) MSE(k)

kOLS 0 28.624639 321.146 0 35.970754 47.44544

kHoerl 0.0000003082071 28.624159 350.2103 0.008460154 23.16867 67.87734

kexp 0.04032404 9.384603 24965.3757 0.04643538 9.454627 145.26514

klineal 0.04036268 9.378959 24965.3844 0.04641734 9.4571 145.25136

ksq 0.0393946 9.522679 24965.1605 0.0411237 10.251297 140.80546

khk 0.00000007725101 28.624518 317.0726 0.001693252 32.337479 37.95626

kh 0.00000007725078 28.624518 317.0726 0.001693252 32.337479 37.95626

klw 0.000001299878 28.622614 1009.5692 0.00002349348 35.914541 47.12054

kn 0.002910918 24.727075 24866.4623 70.86813 - -

kamk 0.000384766 28.037886 24208.464 2225.245 - -

kgmk 0.00003396358 28.571827 18045.1072 15.22808 - -

kmedk 0.000293016 28.175535 23977.5617 7.50183 - -

kks 0.00000007725101 28.624518 317.0726 0.001693252 32.337479 37.95626

kamks 0.00003064842 28.576973 17474.9074 -17.38358 - -

kmaxks 0.0003609909 28.073421 24159.6197 0.9647501 1.432148 187.12299

kmedks 0.000006239131 28.614922 6570.0691 0.0006159796 34.554742 41.18718

kmk1 3597.89 - - 24.30184 - -

kmk2 0.03086997 11.034913 24962.6248 95.01559 - -

kmk3 171.5905 - - 0.256258 2.874257 180.13681

kmk4 0.00003396358 28.571827 18045.1072 15.22808 - -

kmk5 108.7411 - - 0.3651038 2.304299 182.92062

kmk6 0.01461949 16.11944 24950.4202 2.738947 - -

kdk 0 28.624639 321.146 0.006722631 24.965223 59.00921

kf 0.0001529552 28.388376 23121.0258 0.001693878 32.336276 37.95626

km1
12944810 - - 590.5796 - -

km2
0.0009529533 27.215456 24657.5261 8755.64 - -

km3
29443.32 - - 0.06616691 7.406175 156.54123

km4 0.00003396356 28.571827 18045.1038 15.1133 - -

km5
16211.16 - - 0.1333042 4.497771 171.95049
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Table 16: Calculation of σ̂2

α̂2
j

for CO2 emissions in China and number of people employed data

sets
σ̂2

α̂2
j

CO2 emissions in China Number of people employed

j=1 0.004253279 15.27178

j=2 0.007899581 196.321

j=3 0.002887787 1.453364

j=4 0.00000007707998 5.288227

j=5 - 0.001694813

Figure 4 displays the MSE of both examples. The MSE as a function of k rapidly

increases (in the example of the CO2 emissions, the initial decrease is not appreciated6).

Another symptom of the rapid increasing of MSE is that for CO2 emission in China, the

value of βtβ 7 is 24975.93, while for the number of people employed, the value of βtβ is

190.0617. This behavior favors the performance of the estimates provided by kexp, klineal

and ksq; since they are the minimum values of k that make the VIF lower than 10, its MSE

will be smaller than the rest of proposed estimations of k as long as the MSE exhibits an

increasing behavior.

Remark 1. To get a deeper analysis of the last question, following subsection 3.3, 15200

simulations have been carried. For each simulation we have calculated kexp, klineal, ksq and

the turning point of MSE
(
β̂(k)

)
when it goes from being decreasing to growing, kinflection.

Table 17 summarizes the results obtaining the following conclusions:

• The turning point is lesser than the one proposed in this paper (between 82% and 93%

for kexp and klineal, and between 73% and 93% for ksq). Thus, kexp, klineal and ksq are

in the increasing part of the MSE in a high percentage of cases.

• Again, practically a identical behavior is observed between kexp and klineal.

6Considering Table 16, the MSE is decreasing if k is lower than 0.00000007707998.
7The limit of the MSE when k tends to infinity.
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Figure 4: Graphic representation of MSE for CO2 emissions in China and number of people

employed datasets

Table 17: Percentage of cases in which kexp, klineal and ksq are higher than kinflection

p = 3 p = 4 p = 5

kinlection < kexp 82.177% 90.801% 93.868%

kinlection < klineal 82.177% 90.927% 93.868%

kinlection < klineal 73.737% 93.65% 93.868%

• The percentage of cases in which kexp, klineal and ksq is higher than kinflection is higher

as the number of independent variables of the model increases.

The values of k displayed in Tables 1 and 2 have been calculated and compared to values

kexp, klineal and ksq when the associated VIF is lower than 10. Tables 18 to 20 show the

results and in parenthesis the percentage of cases where the VIF is lower than 10.

Note that the percentage where kexp, klineal and ksq are lower than the rest, is elevated

(higher than 62%8 and mostly 90%), which supports the supposition. Furthermore, the

8Situations where the number of cases is reduced (values of 50% and, even, 0%) are not considered.
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number of cases where both conditions (kexp, klineal and ksq lower than the rest of values

of k displayed in Tables 1 and 2 and VIF lower than 10) diminishes as p increases.

�

5. CONCLUSIONS

The first goal of this work is to provide an estimate of the ridge parameter k from the

determinant of the matrix of correlations of the dataset, det(R), which enables one to

mitigate the worrying collinearity in a multiple linear regression. Thus, by following Garćıa

et al. (2017), different datasets are simulated to calculate det(R) and the first value of k that

makes the VIF lower than the traditionally considered threshold of 10. Then, the estimation

is obtained through a regression of k depending on det(R). The VIF and MSE of these

estimations are compared with the values obtained for other estimations in the literature.

Since the estimated values are obtained by considering the minimum values of k that

makes the VIF lower than 10, these estimations also easily present a MSE higher than the

value for OLS estimation but lower than other ridge estimations proposed in the literature if

the MSE exhibits an increasing behavior. It is possible to conclude that kexp, klineal and ksq

are higher than the turning point of monotony in between the 82% and the 93% of the cases

depending on the number of independent variables of the econometric model; thus, kexp,

klineal and ksq are in the growing part of MSE in a high percentage of cases. Furthermore,

in more than 62% of cases, the values of kexp, klineal and ksq are lower than the

rest of values considered in the literature (except for kHoerl), and consequently

the corresponding MSE will be also lower.

It is important to highlight that this work has followed the indications provided by

Marquardt (1970), who stated that A rule of thumb for choosing the amount of bias to

allow with ill conditioned data, whether by ridge or generalized inverse, is that the maximum

variance inflation factor usually should be larger than 1 but certainly not as large as 10. In

addition, the indications provided by Garćıa et al. (2016) have been followed to avoid the

problems indicated by Garćıa et al. (2015) and not obtain values of VIF below 1. The
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Table 18: Percentage of case where kexp is lower than values of k displayed in Tables 1 and

2 for p = 3, 4, 5 (minimum and maximum values are highlighted in bold)

kexp < k∗

k∗ p=3 p=4 p=5

kh 90.695% (6266) 91.269% (378) 92.307% (26)

klw 90.93% (2580) 94.696% (132) 88.888% (9)

kn 99.39% (6926) 97.446% (470) 93.548% (31)

kamk 85.689% (5737) 91.798% (317) 88.461% (26)

kgmk 74.433% (4545) 89.603% (202) 73.333% (15)

kmedk 77.106% (3180) 79.62% (211) 100% (9)

kks 71.81% (3180) 63.461% (52) 0% (1)

kamks 96.088% (3656) 97.095% (241) 93.333% (15)

kmaxks 91.113% (6392) 94.919% (433) 93.939% (33)

kmedks 73.631% (4183) 89.915% (238) 81.818% (11)

kmk1 100% (3104) 100% (85) 100% (5)

kmk2 100% (6956) 100% (461) 100% (38)

kmk3 99.94% (6332) 100% (415) 100% (29)

kmk4 74.43% (4545) 89.603% (202) 73.333% (15)

kmk5 99.95% (4074) 100% (307) 100% (22)

kmk6 99.93% (7269) 100% (489) 97.368% (38)

kdk 69.11% (2791) 62.068% (58) 100% (1)

kf 70.003% (3107) 64.788% (71) 50% (4)

km1 100% (296) 100% (3) (0)

km2 97.35% (6650) 96.829% (410) 100% (32)

km3 100% (1585) 100% (78) 100% (7)

km4 74.24% (4570) 88.059% (201) 73.333% (15)

km5 99.52% (1049) 100% (24) 100% (5)

27



Table 19: Percentage of case where klineal is lower than values of k displayed in Tables 1 and

2 for p = 3, 4, 5 (minimum and maximum values are highlighted in bold)

klineal < k∗

k∗ p=3 p=4 p=5

kh 90.652% (6280) 91.315% (380) 92.307% (26)

klw 90.94% (2583) 94.736% (133) 88.888% (9)

kn 99.39% (6945) 97.463% (473) 93.548% (31)

kamk 85.691% (5752) 91.798% (317) 88.461% (26)

kgmk 74.428% (4552) 89.655% (203) 73.333% (15)

kmedk 77.142% (3185) 79.146% (211) 100% (9)

kks 71.75% (2662) 63.461% (52) 0% (1)

kamks 96.093% (3661) 97.107% (242) 93.333% (15)

kmaxks 91.131% (6405) 94.954% (436) 93.939% (33)

kmedks 73.584% (4187) 90.041% (241) 81.818% (11)

kmk1 100% (3109) 100% (86) 100% (5)

kmk2 100% (6977) 100% (464) 100% (38)

kmk3 99.98% (6349) 100% (416) 100% (29)

kmk4 74.42% (4552) 89.655% (203) 73.333% (115)

kmk5 99.95% (4083) 100% (308) 100% (22)

kmk6 99.91% (7290) 100% (493) 97.368% (38)

kdk 69.19% (2795) 62.068% (58) 100% (1)

kf 69.94% (3111) 64.788% (71) 50% (4)

km1 100% (297) 100% (3) (0)

km2 97.36% (6670) 96.601% (412) 100% (32)

km3 100% (1588) 100% (79) 100% (7)

km4 74.24% (4577) 88.118% (202) 73.333% (15)

km5 99.52% (1052) 100% (24) 100% (5)
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Table 20: Percentage of case where ksq is lower than values of k displayed in Tables 1 and 2

for p = 3, 4, 5 (minimum and maximum values are highlighted in bold)

ksq < k∗

k∗ p=3 p=4 p=5

kh 92.149% (5439) 92.365% (4139) 93.75% (32)

klw 90.725% (2178) 91.276% (1387) 90.909% (11)

kn 95.38% (7412) 98.878% (6239) 91.891% (37)

kamk 94.048% (5192) 94.664% (3711) 86.667% (30)

kgmk 92.715% (2567) 90.009% (2052) 72.222% (18)

kmedk 92.723% (1704) 85.13% (1836) 100% (10)

kks 92.686% (1340) 82.037% (373) 0% (1)

kamks 95.497% (4509) 97.262% (2959) 94.444% (18)

kmaxks 97.777% (6210) 96.543% (5236) 97.368% (38)

kmedks 89.258% (1955) 86.598% (1955) 84.615% (13)

kmk1 100% (2339) 100% (1128) 100% (6)

kmk2 100% (8905) 100% (6225) 100% (45)

kmk3 100% (5750) 100% (5486) 100% (34)

kmk4 92.71% (2567) 90.009% (2052) 72.222% (18)

kmk5 100% (3157) 100% (3975) 100% (27)

kmk6 91.402% (6758) 98.549% (6411) 97.777% (45)

kdk 91.32% (1372) 80% (390) 100% (1)

kf 95.28% (1633) 81.213% (511) 50% (4)

km1 99.68% (313) 100% (31) (0)

km2 94.69% (7672) 96.698% (5149) 100% (36)

km3 99.92% (1283) 100% (942) 100% (7)

km4 92.49% (2478) 88.309% (1976) 66.666% (18)

km5 99.89% (921) 100% (285) 100% (6)
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results obtained in the simulation to analyze the relation between bias and

variance show that the values of k, kexp, klineal and ksq, estimated to obtain a

VIF lower than 10, present a probability between 27.355% and 14.75% (for k

and kexp) and between 37.934% and 14.151% (for klineal) to obtain a MSE lower

that the MSE obtained by OLS. This probability diminishes as p increases (at

least for k and kexp). By comparing these results with the results provided by

Hoerl et al. (1975) for kHoerl, it is noted that the requirement to mitigate the

collinearity has reduced the percentage of cases where the MSE is lower than in

OLS.

The second goal of this work is to find a relation between the VIF and the det(R) as the

following rule of thumb: a VIF higher than 10 corresponds to det(R) below 0.1. A table of

equivalence is also provided to fit this relation to the number of variables and observations

of a multiple linear regression.

Finally, due to the estimation of the variance of the random disturbance, σ2, is present

in most of the estimations of the ridge parameter, k, collected in Tables 1 and 2, a future

research line could be to introduce σ̂2 to the estimations of k proposed in expressions (17)

to (19). It will be also interesting to analyze if providing a estimation of k for each value of

p will be appropriate since it could be more efficient although some prediction ability could

be lost for values of p not considered.
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Garćıa, C., J. Garćıa, M. López-Mart́ın, and R. Salmerón (2015). Collinearity: Revisiting the

variance inflation factor in ridge regression. Journal of Applied Statistics 42 (3), 648–661.
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