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Abstract

In this thesis, we will combine three different approaches to the study
of the dynamics of neural networks and their encoding representations: a
computational approach, that builds upon basic biological features of neu-
rons and their networks to construct effective models that can simulate
their structure and dynamics; a machine-learning approach, which draws a
parallel with the functional capabilities of brain networks, allowing us to
infer the dynamical and encoding properties required to solve certain input-
processing tasks; and a final, theoretical treatment, which will take us into
the fascinating hypothesis of the “critical” brain as the mathematical foun-
dation that can explain the emergent collective properties arising from the
interactions of millions of neurons.

Hand in hand with Physics, we will adventure into the realm of neuro-
science to explain the existence of quasi-universal scaling properties across
brain regions, setting to quantify the distance of their dynamics from a crit-
ical point. We will them move into the grounds of artificial intelligence,
where the very same theory of critical phenomena will prove very useful to
explain the effects of biologically-inspired plasticity rules in the prediction
ability of Reservoir Computers. Half-way into our journey, we introduce
the concept of neural representations of external stimuli, unveiling a sur-
prising link between the dynamical regime of neural networks and the op-
timal topological properties of these representation manifolds. The thesis
ends with the singular problem of representational drift in the encoding of
odors by the olfactory cortex, uncovering the potential synaptic plasticity
mechanisms that could explain this recently observed phenomenon.





Resumen

En esta tesis se combinan tres enfoques diferentes para el estudio de la
dinámica de las redes neuronales y sus representaciones internas: un enfoque
computacional, basado en caracteŕısticas biológicas básicas de las neuronas
y sus redes para construir modelos efectivos que puedan simular su estruc-
tura y dinámica; un enfoque desde la inteligencia artificial, en paralelo con
las capacidades funcionales de las redes cerebrales, permitiéndonos inferir
las propiedades dinámicas requeridas para resolver ciertas tareas involu-
cradas en el procesamiento de inputs externos; y un tratamiento teórico,
bajo la hipótesis del cerebro “cŕıtico” como base matemática para explicar
las propiedades colectivas emergentes que surgen de las interacciones de
millones de neuronas.

De la mano de la F́ısica, nos aventuraremos en el reino de la neurocien-
cia para explicar la existencia de propiedades invariantes de escala que son
cuasi-universales entre diferentes regiones cerebrales, buscando cuantificar
cuan lejos se encuentre la dinámica de estas últimas de un punto cŕıtico.
Luego pasaremos al terreno de la inteligencia artificial, donde la misma
teoŕıa de fenómenos cŕıticos resultará muy útil para explicar los efectos de
reglas de plasticidad neuronal en la capacidad de predicción de algoritmos
tipo Reservoir Computing. A mitad de camino en nuestro viaje, intro-
ducimos el concepto de representaciones neuronales de est́ımulos externos,
revelando un sorprendente v́ınculo entre el régimen dinámico de las redes
neuronales y las propiedades topológicas que deben presentar estas repre-
sentaciones para ser óptimas. La tesis culmina con el singular problema
de la deriva representacional, un fenómeno observado recientemente en el
proceso de codificación de olores por parte de la corteza olfativa, analizando
los posibles mecanismos de plasticidad sináptica que podŕıan explicar dicho
fenómeno.





Preface

Before letting the reader go astray into the beautiful boundaries in which
physics, neuroscience and machine learning can converge, I would like to
take a moment to lay out the logical route-map followed in this thesis.

The first chapter serves as an introduction to many of the concepts that
will be later used across the book. Starting from basic aspects of neuro-
science, we will build the necessary mathematical scaffold to describe and
model neural networks and their dynamics, as well as the plasticity mecha-
nisms that allow such networks to learn from external inputs. Moving into
the realm of artificial intelligence, the chapter also provides an historical
view into the field of machine learning, up to the advent of Reservoir Com-
puting techniques. It concludes with a section that serves as an overview
on the theory of critical phenomena, laying down some of the fundamental
concepts (phase transitions, bifurcations, scale-invariance, renormalization
group...) that will be crucial for the results presented in Chapter 2, but also
relevant to Chapters 3 and 4.

In Chapter 2 we roll up our sleeves and take a journey into the fasci-
nating hypothesis of the “critical” brain. We begin by showing that, under
a phenomenological renormalization group, the activity in different regions
of the brain show quasi-universal scaling properties. We then set out to
quantify how close these networks actually are from a “critical” dynamics,
closing with a minimal model that allows us to link the empirically ob-
served scale invariance with the dynamical regime of the networks. The
core ideas of this chapter have been presented in Morales et al. 2023, but we
also included two new sections that will be published independently else-
where: Section 2.6 make use of topographically-designed neural cultures to
unveil the role of network structure in the emergence of scale invariance and
close-to-critical dynamics; Section 2.7, on the other hand, presents a test for
frequency-dependent criticality in MEG human data, spotlighting the differ-
ences observed between healthy individuals and patients with Parkinson’s
syndrome.

In Chapter 3 we jump from biological to artificial neural networks, delv-



ing into the effects of biologically-inspired plasticity rules on a type of Ma-
chine Learning (ML) framework known as Reservoir Computing. While
the main ideas behind this chapter have been published in Morales et al.
2021a, we decided to present the results therein under a new light. In par-
ticular, we moved further away from the ML thrive for “best performance”,
searching instead for a deeper understanding of the effects of plasticity rules
over the dynamics of the reservoir units. For this reason, instead of ana-
lyzing several plasticity rules and combinations of them to come out with a
best-performing training protocol, we focused our analysis on just two rules
that serve as paradigmatic examples of synaptic and non-synaptic plastic-
ity. Moreover, we introduce the maximum Lyapunov exponent (MLE) as a
control parameter to characterize changes in the dynamical regime of the
network across the plasticity-induced learning phase, showing that transi-
tions to a low-performance regime in networks “over-trained” with plasticity
are actually of different nature for the synaptic and non-synaptic rules.

Chapter 4 takes us into the philosophical problem of perception, which
we will understand as a two-fold process, beginning with the translation of
incoming sensory stimuli into neural representations (i.e., patterns of activ-
ity elicited by such inputs), then followed by a perceptual phase in which
the subjective conscious experience of reality emerges. Using the Reservoir
Computing approach laid out in the previous chapter, we studied how op-
timal representations of external inputs are constrained by requirements of
continuity and differentiability of the manifold in the neural space, finding
an astounding link between the topological properties of these manifolds
and the dynamical regime of the networks.

Finally, the thesis conclude with a chapter on the recently discovered
phenomenon of representational drift. In particular, we will focus our at-
tention in the problem of odor encoding, constructing a biologically-realistic
spiking neural model of the olfactory cortex. We propose a mechanism based
on synaptic plasticity that is able to a explain with surprising accuracy a se-
ries of recent empirical results related to representational drift in this region,
including the dependence of the drift rate with the frequency of stimulus
presentation.

viii



“Follow me, reader! Who told you
that there is no true, faithful,
eternal love in this world! May the
liar’s vile tongue be cut out!
Follow me, my reader, and me
alone, and I will show you such a
love!”

Mikhail Bulgakov,
The Master and Margarita
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Chapter1

A physicist’s view into the brain

[...]

The Brain is just the weight of God—
For —Heft them— Pound for Pound—
And they will differ—if they do—
As Syllable from Sound—

Emily Dickinson, c. 1862

“Rabbit’s clever,” said Pooh
thoughtfully.
“Yes,” said Piglet, “Rabbit’s clever.”
“And he has Brain.”
“Yes,” said Piglet, “Rabbit has Brain.”
There was a long silence.
“I suppose,” said Pooh, “that that’s why
he never understands anything.”

A. A. Milne, Winnie the Pooh



CHAPTER 1. A PHYSICIST’S VIEW INTO THE BRAIN

1.1 From hearts to neurons

The history of neuroscience is a tale of long-lasting misconceptions,
serendipitous discoveries and confronted nobel prizes. Although nowadays
the brain is widely accepted to be the source and vessel of our own identity,
fears and emotions, likings and dislikings and, in essence, our window to
experience reality; this was not always the case.

Back in the ancient Egypt, about 3,000 years ago, the brain was ruth-
lessly thrown away during embalming (part drawn out through the nostrils
with a piece of iron, part rinsed with drugs; Barnes 2012; X. Fan et al.
2019). According to the Book of the Dead (Faulkner 1985), the heart was
considered to be the headquarters of emotions and thoughts, and so it was
the only thing that the gods cared about when deciding the destiny of the
deceased.

This cardiocentric hypothesis (the belief that the heart controls sensa-
tion, thoughts, body movement, etc.) would remain unchallenged for an-
other five centuries, until the works of Alcmaeon of Croton (460 BC), in
the ancient Greece. Alcmaeon, a physician and philosopher (and possibly
a pupil of Pythagoras; Panegyres et al. 2016), was the first to describe the
existence of “channels” —πóρoι (poroi)— connecting the brain to the sen-
sory organs (Panegyres et al. 2016; Zeme lka 2017) 1. Not only he postulated
that the brain was the center of all thoughts, emotions and intelligence, but
also consider it as a possible source of disorders in sensory organs (Zeme lka
2017).

Nevertheless, the encephalocentric hypothesis (sustaining that cognition
occurs exclusively inside the brain) would keep struggling to take its place for
over 2,000 years, with philosophers of the stature of Aristotles or Avicenna
still advocating for a cardiocentric view of the body. Despite the scientific
revolution and the birth of modern science, in the early 19th century the
nervous system was still an enigma, to the point of resisting to inclusion in
the cell theory proposed by Theodor Schwann in 1839, which posited that
all tissues were made up of cells.

A significant breakthrough would arrive from Camillo Golgi’s invention
of a silver staining technique in 1873, allowing nerve cells and their complex
structures to be clearly visualized (Golgi 1879; Zhong et al. 2019). While
Golgi supported the reticular theory, which viewed the nervous system as
a continuous network, Ramón y Cajal, utilizing the Golgi stain in neural
tissue of birds, provided evidence for the discontinuity of the nervous system
and the presence of individual nerve cells (Ramón y Cajal 1904) —oddly
enough, both scientists would be awarded the Nobel Prize in 1906 despite

1It is likely that, while studying dissections of animals, Alcmaeon came across the
optic the nerve, although he never named directly (Doty 2007).

2



1.1. FROM HEARTS TO NEURONS

their diametrically opposing views. Ultimately, the neuron doctrine as a fun-
damental principle of neuroscience was conclusively validated in the 1950s
with the advent of electron microscopy, which demonstrated that nerve cells
were individual units connected through synapses.

At the present time, modern cell-counting techniques estimate that hu-
man brains are composed of around 80-100 billion neurons, and as many
“support” cells known as glia (including, but not limited to, astrocytes,
oligodendrocytes, microglia, Schwann cells...; see (Bartheld et al. 2016) for
a recent review). Neurons are considered the fundamental functional unit
of the nervous system, responsible for transmitting and processing informa-
tion in the form of electrical and chemical signals. Therefore, understanding
their dynamics is crucial to comprehend the emergence of complex cognitive
processes, such as perception, thought, and behavior, from the collective ac-
tivity of billions of neurons in the human brain.

Broadly speaking, nearly all neurons can be divided into three function-
ally distinct parts (see Fig. 1.1a).

In the first place, one finds the dendrites, branching extensions of the
cell body that receive the incoming signals from other neurons or sensory
receptors. Dendrites are covered with small protrusions called dendritic
spines, which collect inputs from other neurons and transmit them to the
body of the neuron, playing a fundamental role in signal processing and
learning.

The soma is the main body of the neuron, containing the nucleus of the
cell, and it can be thought as the “central processing unit”. In most cases,
the soma is responsible of the non-linear integration of incoming signals
from other neurons; only if the total input arriving to the soma exceeds a
certain threshold, and output signal will be generated.

Finally, a long, slender projection extends from the soma of most neu-
rons, termed the axon. They carry electrical impulses, known as action po-
tentials, away from the cell body toward other neurons, muscles, or glands,
and so can be thought as the “output devices” of neurons. In many neurons,
the axon is insulated by a fatty substance called myelin, which speeds up
the transmission of action potentials (see Fig. 1.1a).

Communication between neurons take place in regions called synapses,
where the axon of a presynaptic neuron makes contact with the dendrite (or
in some cases soma) of the postsynaptic neurons. Chemical synapses involve
the release of neurotransmitters from the presynaptic neuron, which traverse
the synaptic cleft (a small gap of ∼ 20−30nm in width) and bind to receptor
proteins on the postsynaptic neuron, leading to a change in the postsynaptic
neuron’s membrane potential (see Fig 1.1a, inset). This can result in either
excitation or inhibition of the postsynaptic neuron, depending on the type of
neurotransmitter and receptors involved. Electrical synapses, on the other

3



CHAPTER 1. A PHYSICIST’S VIEW INTO THE BRAIN

Figure 1.1: Structure and dynamics of an archetypal neuron. (a) Diagram high-
lighting the three distinct parts of a neuron: dentrites, soma and axon, as well as an
schematic depiction of the basic processes involved in the transmission of an action po-
tential from a presynaptic to a postsynaptic neuron in a chemical synapse. (b) Action
potentials in the membrane voltage (black) of a Hodgkin-Huxley (H&H) model neuron,
under square-pulse input current (red). Notice how the first pulse is insufficient to rise the
voltage over the threshold value, and therefore does not elicit an action potential. Once
the firing threshold is reached, the shape and amplitude of the peak is shown to be fairly
independent of the intensity of the input.

hand, are less common and feature gap junctions that allow ions to pass
directly from one neuron to the next, facilitating rapid and direct electrical
communication.

The dynamics of a neuron is primarily governed by the flow of ions
(charged particles) across its cell membrane. At rest, neurons maintain
a negative charge inside their membrane as compared to the extracellular
fluid, referred to as the resting membrane potential. This resting potential,
which is typically ∼ −70mV, is primarily due to the differential distribution
and transport of ions such as sodium (Na+), potassium (K+), and chloride
(Cl−) across the membrane, maintained by the selective permeability of the
cell membrane and the activity of ion pumps.

When a neuron receives a signal, typically in the form of neurotrans-
mitters released by neighboring pre-synaptic neurons, ion channels open,
allowing ions to flow across the membrane. This can cause a small, lo-
calized change in the membrane voltage known as post-synaptic potential
(PSP), which can be positive (EPSP) in excitatory synapses inducing de-
polarization, or negative (IPSP) in inhibitory synapses, in a process of hy-
perpolarization. For an excitatory input, if depolarization reaches a critical
threshold (typically ∼ −55mV), it triggers a rapid and transient change in
the membrane voltage, known as action potential or “spike”. During this
transient, sodium channels open, allowing a massive influx of Na+ ions that
reverses the membrane potential (see Fig 1.1a, inset). Once a peak value is

4



1.2. MODELING THE BRAIN

reached, potassium channels open, allowing K+ ions to flow out of the neu-
ron and restoring the negative resting potential in the membrane, a process
known as repolarization. Typically, an excess K+ outflow after the action
potential leads to a brief hyperpolarization of the membrane, giving rise to
a refractory period during which the neuron cannot fire again.

Action potentials integrated in the soma continue their journey along the
axon. In the majority of neurons, a fatty substance called myelin envelops
segments of the axon, interspersed with regions with no insulation known as
Nodes of Ranvier. This myelination allows the action potential to “jump”
from one Node of Ranvier to the next in a process known as saltatory
conduction. This mechanism ensures faster transmission than would occur
in non-myelinated axons, where the action potential must be regenerated
at every point along the axon, consuming more time and metabolic energy.
At the axon terminals, the depolarization of the axon triggers the release
of neurotransmitters into the synaptic cleft, which will bind to receptors on
post-synaptic neuron dendrites, potentially leading to the initiation of new
spiking events.

Armed with this biological knowledge, in the next section we introduce
the basic aspects regarding the mathematical and computational modeling
of networks of neurons, paving the way towards a statistical-physics view of
the brain.

1.2 Modeling the brain

If neuroscience originated in a nerve, then computational neuroscience
began with an axon. In the 1950s, Alan Lloyd Hodgkin and Andrew Fielding
Huxley, at Cambridge University, set out to explain the ionic mechanisms
underlying the initiation and propagation of action potentials in neurons.
Upon observations in voltage-clamp experiments on the giant axon of the
squid —large enough to be measured with the technology available at the
time—, they constructed a mathematical model that described how the flow
of ions across the neuronal membrane contributes to the electrical conduc-
tivity and the capacitance of the neuron, leading to the generation of action
potentials (Hodgkin et al. 1939; Schwiening 2012). At its core, the model
comprised a set of nonlinear differential equations describing the kinetics
of voltage-gated sodium and potassium channels, each critical for the rapid
rise and fall of the action potential, respectively (Hodgkin et al. 1939).

The Hodgkin-Huxley (H&H) model would later become one the most
beautiful and paradigmatic examples of theory-before-experiment break-
throughs, accurately predicting the existence of these ion channels even be-
fore they were directly observed. Moreover, this new approach illustrated for
the first time how detailed biophysical processes could be captured quantita-

5



CHAPTER 1. A PHYSICIST’S VIEW INTO THE BRAIN

tively and simulated with computers, giving birth to a new field of computa-
tional neuroscience. At the time of writing, the most complex single-neuron
models are able to combine electrophysiological, morphological, and even
transcriptomical features, predicting gene expression and electrical activity
in major cortical neurons, while highlighting unique variability across and
within cell-types (Nandi et al. 2022; Brette 2015b).

Now, the journey from individual neurons to neural networks represents
a fundamental shift in the complexity and computational power of the ner-
vous system. It is a this transition from the micro to the macro scale in
neuroscience that higher-order cognitive functions and behaviors can emerge
through the collective interactions of neurons. Given the formidable ad-
vances on modeling the dynamics of individual neurons, one could naively
wonder whether a similar approach could not be taken with the whole brain,
just by defining some rules that account for then synapses and then con-
necting the previously modeled neurons up to a scale of the full brain.

To throw some numbers into the problem, a high-resolution, real-time
molecular simulation of the entire human brain would need to account for
90 billion neurons, 1,000 trillion synapses, 90 billion glial cells, 450 billion
vascular end feet (supporting 450 trillion synapses), 1 trillion molecules per
cell undergoing 1,000 reactions per molecule per second, at 10,000 time steps
per second. All together gives us the spectacular value of 4 × 1029 FLOPS
(floating-point operations per second) for a fully realistic simulation of the
brain (X. Fan et al. 2019).2

The above estimation, far from been discouraging, should help us to
realize the importance of developing mathematical formulations and simple
models that, in the spirit of physics (and in particular of statistical mechan-
ics), seek to understand the macroscopical phenomenology arising from the
interaction of millions of neurons, without the need for a detailed, micro-
scopic description of the later. Thus, the models used nowadays to simulate
the activity of networks of neurons can be typically categorized into two pri-
mary classes, which differ in their level of biological realism and the types
of phenomena they can capture.

On the one hand, rate-based models, also known as firing rate or mean-
field models, focus on the average firing rate of a population of neurons.
In these models, neurons (or sometimes larger, coarse-grain regions in the
brain) are typically represented as single units and their activity can be
described by a continuous or discrete variable, xi(t), representing the firing
rate or probability of firing per unit time in neuron i. Continuous rate
models are described using differential equations, which take the general

2To give an intuition on the magnitude of the problem, to this day, the Folding@home
network holds the largest combined computing power with over 2.3 × 1018 FLOPS, still
11 orders of magnitude below the required computational capacity.
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1.2. MODELING THE BRAIN

form:
dx(t)

dt
= f(x(t),u(t)) , (1.1)

where x(t) is a vector containing the firing rate of all neurons in the network
at time t, u(t) is the total input (possibly multivariate) current to the net-
work, and f is a transfer or activation function (typically linear, sigmoidal
or ReLU). Similarly, discrete-time rate models can be described in terms of
difference equations:

x(t+ 1) = f(x(t),u(t)) , (1.2)

where now t is an integer value ranging from 0 to the maximum time-step,
T , considered in the simulation.

These types of models are computationally efficient and often used in
large-scale network simulations due to their simplicity. They are particu-
larly useful for investigating the overall behavior of neural populations, as
they are able to capture phenomena such as population average activity, os-
cillations, and the emergence of stable states. Moreover, rate models often
yield analytical solutions, allowing for mathematical analysis and insights
into network behavior (see, for instance, (Cook et al. 2022) for a recent re-
view). Nevertheless, because rate models disregard the precise timing and
amplitude of spikes among individual neurons, they are not suitable for un-
derstanding phenomena such as spike-timing-dependent plasticity (STDP)
or temporal encoding.

Spike-based models, on the other hand, aim to capture the detailed tem-
poral dynamics of individual cells, describing how neurons generate action
potentials (spikes) in response to input currents, and how these spikes in-
fluence the network. The H&H model is an example of this type. However,
while groundbreaking, the H&H model has several limitations due to its
complexity, with multiple differential equations and parameters for each
neuron, that makes it computationally too costly for modeling large net-
works.

integrate-and-fire (I&F) models offer a useful alternative, significantly
reducing computational load by simplifying the representation of neuronal
activity. They abstract the neuron’s behavior to a single equation, integrat-
ing incoming currents until a threshold is reached, point in which an action
potential is fired, and the voltage is reset. More concretely, the simple leaky
integrate-and-fire (LIF) model can be described by the following equation:

C
dV (t)

dt
= −V (t) − Vrest

R
+ I(t) (1.3)

where C is the membrane capacitance, V (t) is the membrane potential, Vrest
is the resting membrane potential, R is the membrane resistance, and I(t)
is the input current. When the membrane potential V reaches a threshold
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value, Vth, a spike is generated, and the membrane potential is reset to a
value, Vreset, that is typically lower than the resting potential (hyperpolar-
ization).

The biological plausibility of these types of models as compared to rate
networks comes as a cost, not only from the computational perspective, but
also in terms of complexity, as they typically require a larger number of
parameters and are hard to treat analytically. On the other hand, their
high-temporal precision allows the study of phenomena such as temporal
encoding or synchrony detection, as well as forms of neural plasticity that
depend on the exact timing of the spikes in pre and postsynaptic neurons.

Summarizing, rate models are valuable for exploring population-level
dynamics while allowing some analytical tractability, whereas spiking neu-
ron models are essential for investigating precise timing, spike-based learn-
ing rules, and other mechanisms at the cellular level (see Brette 2015a for a
beautiful article on the epistemological underpinnings of rate-based vs spike-
based codes). I hope that, by the end of this thesis, I will have convinced
the reader that a combination of these two approaches can provide us with
a more comprehensive understanding of the dynamics of neural networks in
the brain.

In particular, we will make use of a simple, continuous linear rate model
of recurrently connected neurons in Chapter 2, where the analytical tractabil-
ity of the model will prove very useful linking the observed neural dynamics
in actual experimental data to the theory of critical phenomena (introduced
in the last section of this chapter). Chapters 3 and 4, on the other hand,
make use of a machine learning (ML) framework, known as Reservoir Com-
puting (RC), which can be understood as a time-discrete rate model of
non-linear interacting units.

The spiking model paradigm will be the protagonist of Chapter 5, where
we set out to build a biologically-realistic model of the olfactory cortex using
LIF neurons. This will allow us to study the role of input-induced changes
in the neural encoding of odors, using plasticity rules that depend on the
exact timing of the spikes.

From the most biologically-realistic model of a single neuron, to a coarse
rate model describing the activity of macroscopic patches in the cerebral
cortex, all approaches considered so far have something in common: they
reproduce the dynamics or structure of neurons or neural networks within
a synthetic model, trying to close the epistemological gap comparing the
emergent phenomenology with an underlying biological reality.

We now introduce a fundamentally different paradigm that can also be
used in the theoretical study of the brain. Instead of looking to reproduce
some observables of biological networks of neurons, one can try to generate
models that can mimic some of the expected functions or capabilities of the
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brain from a task-solving perspective (including, e.g., memory, prediction
ability or classification accuracy). With this purpose in mind, let us take a
step together into the realm of Machine Learning.

1.3 The advent of learning machines

From the first bird-inspired “flying machines” of Leonardo da Vinci to
the latest advances in artificial photosynthesis, humankind has constantly
sought to mimic nature in order to solve complex problems. It is therefore
not surprising that the dawn of artificial intelligence (AI) and machine learn-
ing (ML) was also characterized by the idea of emulating the functionalities
and characteristics of the human brain.

Within his book The Organization of Behavior, Donald Hebb proposed
in 1949 a neurophysiological model of neural interactions that attempted
to explain the way associative learning takes place (Hebb 1949). Hebb sug-
gested that the simultaneous activation of cells would lead to the reinforce-
ment of the involved synapses, a hypothesis often summarized in the today’s
famous statement: “neurons that fire together, wire together”. Thus, Heb-
bian theory would be swiftly taken by neurophysiologists and early brain
modelers as the foundation upon which to build the first working artificial
neural networks. In 1950, Nat Rochester at the IBM research lab embarked
in the project of modeling an artificial cell assembly following Hebb’s rules
(Milner 2003). However, he would soon be discouraged by a critical issue
in Hebb’s theory: as learning progresses and connections strengthen, neural
activity could overwhelm the entire assembly, leading to network saturation.

A solution to this problem would not arrive until 1957, when Frank
Rosenblatt, seeking to find a more “model-friendly” version of Hebb’s as-
semblies, came up with the Perceptron, the first example of a feed-forward
Neural Network (FFNN) (Rosenblatt et al. 1958). Rosenblatt would be the
first one to introduce different types of units within the network, which to-
day would correspond to what we know as input, hidden and output layers in
FFNNs. Mathematically, for a given input, x, the output of the perceptron
is a single binary value f(x) that can be computed as:

f(x) =

{
1 if w · x + b > 0

0 otherwise
(1.4)

where w·x is the dot product of the input, x, with the weight vector, w, and
the bias term, b, acts like a moving threshold. In a modern FFNN, the step
function is usually substituted by a non-linearity φ (x) termed the activation
function. Being computationally more applicable than the original ideas of
Hebb, Rosenblatt paved the way that would progressively detach ML from
its biological inspiration.
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Despite the initial excitement about perceptrons, in 1969 Marvin Min-
sky and Seymour Papert proved that these type of networks could only be
trained to recognize linearly separable patterns (Minsky et al. 1969). The
authors already recognized the potential of multilayer perceptrons (MLPs)
to tackle non-linear classification problems, but the lack of suitable learning
algorithms at the time lead to the stagnation of the field, in what is known
as the first of the AI winters (Kurenkov 2015).

The interest in ML would not thaw out until 1974, with the advent of
today’s widely known backpropagation algorithms. Backpropagation was
derived by multiple researchers in the early 60’s and implemented to run
on computers as early as 1970 by Seppo Linnainmaa (Linnainmaa 1970).
Neverthelss, it was Paul Werbos —back then a PhD student at Harvard
University— the first one to propose it as a way of effectively training MLPs
(Paul Werbos 1974) (although the formulation as we know it today would
arrive almost a decade later by Rumelhart et al. 1986). Understood as a
supervised learning method in multilayer networks, backpropagation aims
to adjust the internal weights in each layer to minimize the error or loss
function at the output, using a gradient-descent approach based on the chain
rule to propagate the error from the outer to the inner layers. Interestingly
enough, although backpropagation is usually criticized for being biologically
unrealistic, Werbos himself originally found inspiration in the psychological
theories of Freud, as he would later recount (Paul Werbos 2006):

In 1968, I proposed that we somehow imitate Freud’s concept of
a backwards flow of credit assignment, flowing back from neu-
ron to neuron . . . I explained the reverse calculations using a
combination of intuition and examples and the ordinary chain
rule, though it was also exactly a translation into mathematics
of things that Freud had previously proposed in his theory of
psychodynamics!

It is known, however, that signals in the human brain do not cross from
one layer of neurons to the next following a feed-forward architecture, nor
learning takes place “backpropagating” errors from deeper to outerlayers.
Instead, biological neural networks are recurrently connected, which allows
neurons to send feedback signals among each other. This idea that moti-
vated the appearance of recurrent neural networkss (RNNs). From a theo-
retical point of view, RNNs are not only more biologically plausible, but also
computationally more powerful than FFNNs. While FFNNs can approxi-
mate mathematical functions, RNNs can approximate dynamical systems
—i.e., functions with an added time component (Grezes 2014).

It was John Hopfield, in 1992, the first one to come up with a successful
implementation of an RNN: the Hopfield network Hopfield 1982. Developed

10



1.4. THE THEORY OF CRITICAL PHENOMENA

as a content-addressable (i.e., “associative”) memory, the model consisted
of a fully connected network of binary units implementing a Hebbian learn-
ing rule during training. However, a real milestone in the field of ML would
arrive with the discovery of the backpropagation-through-time (BPTT) al-
gorithm for RNNs, derived by numerous researchers, but popularized in
1990 by Paul Werbos (P.J. Werbos 1990). In short, the idea behind the
backpropagation-through-time (BPTT) is to “unfold” the RNN in time,
treating the state of the network at time t, x(t), as the input to another
copy of the same network at time t+1, x(t+1) (Kurenkov 2015). Although
the appearance of this new method seemed promising at first, RNNs were
still performing worse than simpler FFNNs and at a higher computational
cost, due to what is known today as the vanishing gradient problem of the
BPTT algorithm (Hochreiter et al. 2001).

It wouldn’t be until the beginning of the 21st century when a new
paradigm in RNNs design and training appeared. In 2000, a learning algo-
rithm aiming to overcome the problems of the BPTT was proposed under
the name of Atiya-Parlos Recurrent Learning (APRL) (Atiya et al. 2000).
Among its results, it showed that the dominant changes always appeared
in the weights of the last, output layer, while the weights in deeper layers
converged slowly. This idea motivated two fundamentally new approaches
to RNNs that would appear independently on the following years: the Echo
State Network (ESN) of Herbert Jaeger (Herbert Jaeger 2001c) and the
Liquid State Machine (LSM) of Wolfgang Maass (Maass et al. 2002), both
constituting trailblazing models of what is known today as the Reservoir
Computing (RC) paradigm (Grezes 2014). The main idea behind the new
approach was simple: if only the changes in the output layer weights are
significant, then the treatment of the weights of the inner network can be
completely separated from the treatment of the output layer weights. We
will cover all the intricacies of this RC framework in Chapter 3, when study-
ing the effect of plasticity mechanisms in their dynamics.

We have seen so far two different “simulation-based” approaches —
computational neuroscience and machine learning (ML)— that can be used
to tackle the complexity of the brain. In this last section of the first chapter
we provide a third approach, more into the theoretical side, that will allow
us to investigate the dynamics of biological networks using formal mathe-
matical descriptions based on the theory of statistical mechanics and the
behavior of systems near critical points.

1.4 The theory of critical phenomena

The origins of the theory of critical phenomena can be traced back to the
early observations of critical behavior in fluids. One of the earliest recorded
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studies was by Thomas Andrews in 1869, who described the critical point of
carbon dioxide, beyond which gas and liquid phases become indistinguish-
able. This was followed by the work of Johannes Diderik van der Waals,
who introduced an equation of state in 1873 that could predict the behavior
of fluids near the critical point.

In the early 20th century, the development of quantum mechanics pro-
vided a deeper understanding of the microscopic interactions that give rise
to critical behavior. Paul Ehrenfest introduced the concept of phase transi-
tions and classified them according to the discontinuity in thermodynamic
derivatives, such as volume or entropy. Historically, phase transitions were
divided by Ehrenfest into first-, second-, and higher-order transitions. Thus,
a transition is said to be of first order if the first derivative of the free en-
ergy with respect to some thermodynamics variable is discontinuous at the
critical point. Likewise, in a second order transition the first derivative is
continuous, but the second and successive derivatives show a singularity at
the critical point (as for the case of the paradigmatic Ising model in two or
more dimensions) (Honig et al. 2016; Binney et al. 1992).

Nevertheless, this division of phase transitions according to their order is
not universal. For instance, in the case of spin-glasses, the second derivative
of the free energy with respect to an external magnetic field is singular, but
it is continuous with respect to the temperature. Moreover, there are also
examples of topological phase transitions, like the Berezinskii-Kosterlitz-
Thouless (BKT), which are effectively of infinite order (Honig et al. 2016).
Therefore, in the reminder of this thesis we will favor Landau’s convention,
which categorizes phase transitions into continuous and discontinuous ones,
where the later can be considered of first order if all first derivatives of the
function of state are discontinuous at the same critical point (Landau et al.
2013).

The post-World War II era saw significant advancements with the intro-
duction of the renormalization group theory by Leo P. Kadanoff (Kadanoff
1966) and Kenneth Wilson (K. G. Wilson et al. 1974; K. G. Wilson 1975).
As we will see in the next section, this theory showed that systems with
vastly different microscopic details could exhibit similar macroscopic behav-
ior near the critical point, setting the mathematical scaffold to understand
the emergence of scale-invariance and universality near critical points.

1.4.1 From micro to macro: the Renormalization Group

The fundamental concept of the Renormalization Group (RG) is rooted
in the works of physicists such as Ernst Stueckelberg and André Petermann
in the late 1940s (Stueckelberg et al. 1953), and Murray Gell-Mann and
Francis Low in the early 1950s (Gell-Mann et al. 1954), who sought to un-

12



1.4. THE THEORY OF CRITICAL PHENOMENA

Figure 1.2: Kadanoff’s renormalization group approach. At each step of the RG,
neighboring spins are clustered together and replaced by an effective spin in a process of
coarse-graining or decimation. Then all lengths are re-scaled with the new lattice spacing,
such that the new lattice is identical to the original with a reduced number of spins by
coarse-graining.

derstand the behavior of quantum fields at different energy scales. The term
“renormalization” originally referred to the process of removing infinities
arising in quantum electrodynamics (QED) calculations, but it was Ken-
neth G. Wilson who, in the early 1970s, realized the broader implications
of these ideas in the context of critical phenomena and phase transitions in
statistical physics (K. G. Wilson et al. 1974; K. G. Wilson 1975).

In this section we will provide a brief, pedagogical introduction into the
ideas of the real space or “block-spin” Renormalization Group, as originally
introduced by Leo P. Kadanoff in 1966 (Kadanoff 1966).

Let us consider a two-dimensional microscopic system of spins, described
by state variables {si} taking values ±1 at a certain temperature T , and
assume that each spin can only interact with its nearest neighbours. The
physics of this system will be then characterized by a certain Hamiltonian,
H(T, J), where J is known as the coupling strength, describing the inter-
actions between neighboring spins. Because we saw in the previous chapter
how macroscopic collective phases can emerge from the interactions of in-
dividual elements at the microscopic level, we will be now interested in
understanding how the properties of our original system, as described by
the original Hamiltonian H(T, J), change when we move the observation
scale towards more coarse-grained descriptions of the system.

The idea of Kadanoff was to block the original variables into “clusters”
of neighboring spins, replacing them by a single effective spin, in a process
termed coarse-graining or decimation. This transformation scales the length
of the system by a factor b, and the new effective Hamiltonian, H̃, for the
system can be written in terms of a renormalized coupling J̃ . The changes in
the coupling constant under renormalization are implemented by a certain
beta function J̃ = β(J), which is said to induce a renormalization group flow
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on the space of couplings. 3 Thus, the above procedure can be iterated a
number of times, alternating steps of “coarse-graining” and renormalization,
evolving towards more coarse-grained descriptions of the system.

In more general terms, the beta function can be understood as a math-
ematical tool that describes how the interactions of the system change with
the observation scale. Mathematically, if g is a coupling constant and µ rep-
resents the scale (which is usually energy or length), then the beta function
is given by:

β(g) = µ
dg

dµ
(1.5)

If the beta function is positive, the coupling gets stronger when moving
towards larger scales. In the other hand, if the beta function is negative the
coupling weakens as we move towards mor coarse-grained descriptions of
the system. The fixed points, g∗, of the RG transformation are the critical
points of the dynamics, characterized by:

β(g∗) = 0

At these points, the system is said to be scale-invariant, and the coupling
constants no longer change as we coarse-grain our system. The critical
exponents, which describe how different macroscopic observables diverge
near the critical point, can be derived from the behavior of the beta function
near its fixed points. For instance, it can be shown that the correlation
length, ξ, which is the scale over which spins are correlated, diverges with
a critical exponent ν as the system approaches the critical temperature Tc:

ξ ∼ |T − Tc|−ν

Although we will not go into further details for the purpose of this short
introduction, one of the main strengths of the RG theory lies in its ability
to show that systems with different microscopic details (like different lat-
tice structures or spin configurations) can show the same critical behavior,
characterized by universal critical exponents. For an in-depth treatment of
the RG theory and the concepts of scaling, relevant and irrelevant operators
and universality classes, we refer the reader to the classic books of Binney
et al. 1992 and Chaikin et al. 2000, as well as Honig et al. 2016 for a more
recent (and gentle) introduction to the theory of critical phenomena and
RG.

3More generally, given a certain coarse-grain transformation {si} ←→ {s̃i}, a theory
is said to be renormalizable if we can rewrite the partition function Z for the new coarse-
grained system only in terms of the new variables {s̃i} for a certain transformation in the
coupling parameters {Jk} ←→ {J̃k}.
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1.4.2 The critical hypothesis in neuroscience

By now, I hope I could convince the reader that when systems are
composed of numerous microscopic elements, they can exhibit a variety
of macroscopic collective behaviors or phases, whose properties are intrin-
sically different from those of their individual components. By the end of
the 20th century, this phenomenon, famously encapsulated in the title of
the quintessential article by P. W. Anderson: More is different (Ander-
son 1972), soon led to the speculation that different forms of biological
states may similarly be considered as collective phases, with structural and
dynamical reconfigurations between these states akin to phase transitions
(Anderson 1972; Hopfield 1994; Pollack et al. 2008; Solé 2011).

Indeed, such transitions have been shown to be ubiquitous across many
different biological systems (Muñoz 2018), from the synchronization phase
transitions characteristic of biochemical rhythms (Garcia-Ojalvo et al. 2004))
or fireflies flashing (J. Buck et al. 1968), to melting phase transition in DNA
strands (Y. C. Li et al. 2006), or percolation transitions in collagen networks
(Alvarado et al. 2013).

Now the question we will be naturally interested in —given the topic
this thesis— is the following: can we find some similar phenomenology, re-
sembling the concepts of phases and phase transitions in statistical physics,
inside the brain?

When neuroscientists poke into the electrophysiological processes of the
brain — from microscopic individual neurons to large-scale whole-brain
measurements— they systematically detect, even under conditions of quiet
rest, an ongoing background of noisy and variable neural activity (Softky
et al. 1993; Arieli et al. 1996; Raichle 2011; Deco et al. 2008; Deco et al.
2012). The fact that this ceaseless activity is energetically so costly had
researchers long wondering what crucial functionalities it may entail, giving
rise to a diversity of theoretical explanations.

One prominent hypothesis, which will be at the core of most of the re-
sults presented in this thesis, proposes that neuronal networks operate close
to a critical point, i.e., at the edge between two different types of collec-
tive behavior (Plenz et al. 2014; Chialvo 2010; Tagliazucchi et al. 2012;
Haimovici et al. 2013; Cocchi et al. 2017; Wilting et al. 2019; Hidalgo et al.
2014; Z. Ma et al. 2019; Ponce-Alvarez et al. 2018; Martinello et al. 2017;
R. Wang et al. 2019; O’Byrne et al. 2022). We know, from the theory of sta-
tistical physics, that near critical points we can find long-range correlations,
scale-invariant spatio-temporal patterns, maximal sensitivity to perturba-
tions, enhanced dynamical range, etc. (Binney et al. 1992; Muñoz 2018).
Therefore, it was conjectured that the brain, by being near criticality, could
extract crucial advantages from such a plethora of spontaneously-generated
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collective properties (Shew et al. 2013; Chialvo 2010).

From the theoretical side, a lot of effort has been devoted to trying
to discern what type of criticality is the most pertinent to describe brain
activity (Mora et al. 2011; Muñoz 2018). Some of the different possible
scenarios that have been explored include:

1. Avalanche criticality: the first empirical evidence supporting the criti-
cal hypothesis raised from the observation of neural avalanches, which
are irregular outbursts of neural activity interspersed by quiescent pe-
riods, detected both in vitro (Sanchez-Vives et al. 2000; Eytan et al.
2006; Segev et al. 2001) and in in vivo (Meister et al. 1991; Steriade
et al. 1993) experiments. Remarkably, in their seminal paper 20 years
ago, Beggs and Plenz showed that existence of scale-invariant statis-
tics in both the size and duration these avalanches, with power-law
exponents that matched those of a mean-field critical branching pro-
cesses (J. M. Beggs et al. 2003; Petermann et al. 2009; Mazzoni et al.
2007). Thus, this type of criticality is associated to a state in which
the instability occurs at a population level, with non-zero average
correlations between neurons and a single dominant slow time-scale
(J. M. Beggs et al. 2003; Chialvo 2010; Cocchi et al. 2017; Moretti
et al. 2013; Dahmen et al. 2019; Corral López et al. 2022).

2. The edge of synchronization: the previously introduced resting-state
of noisy and variable neural activity, can be understood as an asyn-
chronous state of neural activity, in which excitatory and inhibitory
inputs to any given neuron typically cancel with each other, so that
the mean input is below the activation threshold. Within this picture,
one can consider a neural network composed of excitatory and in-
hibitory units, so that its overall state can be shifted (by varying, e.g.,
the intensity of the synaptic strengths) from the previously discussed
asynchronous phase to a synchronous one, where collective oscilla-
tions emerge (Liang et al. 2020). It has been argued that the brain
could operate at the edge of a synchronization phase transition, jointly
exploiting the advantages of both asynchronous noisy states (e.g., for
information processing) and synchronous ones (e.g., for coherent infor-
mation transmission through oscillations) (Yang et al. 2012; Villegas
et al. 2014; Poil et al. 2012; Liang et al. 2020; J. Li et al. 2020; Santo
et al. 2018; Buend́ıa et al. 2021).

3. The edge of chaos: it has been hypothesized that the brain could be
operating close to an order-to-chaos phase transition (Steyn-Ross et
al. 2010; Magnasco et al. 2009; Solovey et al. 2015), a regime that has
been shown to maximize information transmission, memory capacity

16



1.4. THE THEORY OF CRITICAL PHENOMENA

and input representations, among other properties (Crutchfield et al.
1988; Langton 1990; Melanie 1993; Boedecker et al. 2011; Morales
et al. 2021b). Experimental evidence supporting this hypothesis was
found in high temporal-resolution electrocorticography data from hu-
man brains. In L. Alonso et al. 2014, the authors showed how the
maximum Lyapunov exponent of the dynamics (which, when positive,
characterizes the presence of chaos, as we will see in Chapter 3), fluctu-
ated around the threshold of instability in awake subjects, indicating
that brain dynamics is finely tuned to the edge of a phase transition;
but became more negative (i.e., stable) in anesthetized subjects. This
finding suggests that the edge of stability is could be associated with
a functional brain, whereas deviations from this edge are indicative of
a loss of consciousness or changes in functional dynamics.

In more generic terms, one can say that criticality emerges whenever the
baseline phase loses its stability and shifts continuously to another phase.
Thus, when talking about general features of criticality and to avoid leaning
towards a particular hypothesis regarding the type of underlying phase tran-
sition, we will more generally refer to it as the edge of instability (Morales
et al. 2023).

Recently, with the advent of modern techniques enabling simultaneous
recordings of thousands of neurons, complementary experimental evidence
in favor of the critical hypothesis have emerged from unexpected angles
(Tkačik et al. 2015; Fagerholm et al. 2021; Meshulam et al. 2019; Dahmen
et al. 2019; Morales et al. 2023). In the following chapter, we will combine
theoretical aspects of linear-response theory and the renormalization group
to further study the validity and implications of this attractive hypothesis.
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Chapter2

The critical brain

We adore chaos because we love to
produce order.

M. C. Escher

[...] vi la circulación de mi oscura
sangre, vi el engranaje del amor y la
modificación de la muerte, vi el Aleph,
desde todos los puntos, vi en el Aleph la
tierra, y en la tierra otra vez el Aleph y
en el Aleph la tierra.

J. L. Borges



CHAPTER 2. THE CRITICAL BRAIN

2.1 Introduction: new light into the criticality hy-
pothesis.

Built upon the foundations of statistical mechanics, the so-called “criti-
cality hypothesis” has revealed itself as an elegant solution in the search for
a mathematical characterization of the brain dynamical regime (see Plenz
et al. 2021; Cocchi et al. 2017; Massobrio et al. 2015; Wilting et al. 2019;
O’Byrne et al. 2022; Muñoz 2018 for some recent reviews). Nevertheless,
despite its conceptual appeal and thrilling implications, the validity of this
hypothesis as an overarching principle of dynamical brain organization re-
mains a controversial issue (Touboul et al. 2017; J. Beggs et al. 2012; Cubero
et al. 2019).

From the empirical side, evidence of putative brain criticality often relies
on the observation and characterization of neuronal avalanches and their
power-law statistics in size and duration (J. M. Beggs et al. 2003; Petermann
et al. 2009; Plenz et al. 2021; Z. Ma et al. 2019; Liang et al. 2020). However,
it has been suggested (among other possibilities), that the observed power-
laws: (i) could be a side-effect of experimental artifacts (C. Bédard et al.
2006; Claude Bédard et al. 2009); (ii) might be better fit by exponential
distributions (Touboul et al. 2010; Touboul et al. 2017; Dehghani et al.
2012); (iii) may not be the fingerprint of any critical process, but arise from
a combination of exponential distributions (Reed et al. 2003), or from an
underlying multiplicative noise (Sornette 1998).

Over the past decade, other approaches have emerged that compare
empirical properties of neural systems with those expected on a system
poised near a critical point. This includes, for instance, the study of long-
range spatio-temporal correlations (Palva et al. 2013; Poil et al. 2012); the
search for statistical critical-like patterns of activity (Tkačik et al. 2015;
Mora et al. 2011); or the analysis of whole-brain critical models fitted to
match empirically observed correlations (Cabral et al. 2017; Tagliazucchi et
al. 2012; R. Wang et al. 2019). Despite this extensive effort, novel theoretical
frameworks and more-stringent experimental tests are still much needed to
either prove or disprove this conjecture.

As we saw in Chapter 1, systems at or near criticality exhibit scale
invariance, meaning that their properties remain unchanged under rescaling,
so that their behavior is characterized by universal features independent of
the specific details or size of the system (Muñoz 2018). The presence of scale
invariance is often captured by power-law —or scale-free— distributions of
diverse quantities (Sornette 2006), and can be understood because of the
divergence of the system’s correlation length, which correlates the system’s
variables over larger and larger scales as we approach the critical point.
Renormalization Group (RG) was also introduced in Chapter 1 as a way
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of capturing these universal features that persist across different scales as
we zoom out from a micro- to a macroscopic description of the system
(K. G. Wilson 1983; Binney et al. 1992; Efrati et al. 2014). In the original
real-space RG, as proposed by Kadanoff for spin-systems (Kadanoff 1966),
one has to “coarse-grain” neighboring spins into blocks, which are then
clustered into new blocks at successive steps of the RG transformation, thus
constructing effective descriptions of the microscopic system at progressively
larger spatial scales.

The problem one encounters when trying to adapt this methodology to
neural data is the absence of a lattice geometry or, more generally, the lack
of an embedding metric space in which the notions of scale and distance
are well-defined, so that we can understand what it means to coarse-grain
the activity of “neighboring” neurons. Extensive efforts have been devoted
to work around this problem, specially in trying to develop algorithms that
could generalize the notion of RG to complex networks (Kim 2004; Gfeller
et al. 2007; Serrano et al. 2008; C. Song et al. 2005; Garćıa-Pérez et al. 2018;
Villegas et al. 2023). Direct application of the former RG schemes to the
realm of neural networks remains elusive nonetheless. At larger —already
macroscopic— scales, a hierarchical coarse-graining of the anatomical re-
gions of the brain unveiled the existence of self-similarity across human
connectomes using a geometric RG that embedded the network structure
into an underlying hidden metric space (Zheng et al. 2020; Garćıa-Pérez
et al. 2018). On a more theoretical side, but still within the realm of macro-
scopic field equations, a renormalized theory for a simplified version of the
stochastic Wilson-Cowan model was recently derived, allowing to uncover
the structure of non-linear interactions across scales (Tiberi et al. 2022).

Delving deep into the microscopic level, it is unfeasible however to try to
map the millions of individual synapses that make up the connectivity pat-
terns between neurons. How could we then construct effective descriptions
of a system at progressively larger scales, when we lack any information
about the underlying structure among its components? An out-of-the-box
solution to this problem was proposed in Meshulam et al. 2019, in what
they termed a Phenomenological Renormalization Group (PRG) approach.
In the following section we present the main ideas behind the PRG ap-
proach, which will later serve us to look for scale-invariant properties of
neural data.

21



CHAPTER 2. THE CRITICAL BRAIN

2.2 Renormalization Group for neural data.

To understand the context and results of the PRG devised by Meshulam
et al., let us consider a set of N neurons, such that the empirically-measured
activity of the i-th neuron is discretized on a set of T non-overlapping time
bins of width ∆t, with the average firing rate over the time bin tl represented
as xi(tl), with l ∈ [1, T ]. The coarse-graining scheme then proceeds as
follows: instead of grouping neighboring neurons using a criterion of spatial
vicinity, we can cluster them on the basis of maximal pairwise Pearson’s
correlation:

Cij =
⟨δxiδxj⟩√

⟨(δxi)2⟩⟨(δxj)2⟩
, (2.1)

where averages, ⟨·⟩, are computed across the available discrete time steps
and δxi = xi − ⟨xi⟩. More specifically, at the k-th coarse-graining step, one
would select the two most correlated variables, i and j∗i, and combine their
activities into a new coarse-grained, “block-neuron” variable given by:

x
(k)
i = z

(k)
i

(
x
(k−1)
i + x

(k−1)
j∗i

)
, (2.2)

where k = {1, ..., nsteps} indexes the RG step —and one takes x
(0)
i to be the

original timeseries of the i-th neuron as extracted from the data— whereas

the normalization factor, z
(k)
i , is chosen such that the average non-zero

activity of the new variables x
(k)
i is equal to one. The procedure is then

iterated by considering the second most correlated pair of neurons, and so
on, until a set of Nk = N/2k block-neurons is obtained, where each block-
neuron is a cluster containing the summed activity of K = 2k original units
(see Fig. 2.1 for a schematic representation).

Once the coarse-graining procedure has been completed, the goal is to
study how the statistical properties of the system change as one moves
progressively across scales. Following Meshulam et al. 2019, here we focus
on four quantities that have a clear interpretation in the classical theory of
critical phenomena (Binney et al. 1992):

1. The variance of the non-normalized coarse-grained variables:

M2(K) =
1

Nk

Nk∑
i=1

[〈(
x̃
(k)
i

)2〉
−
〈(
x̃
(k)
i

)〉2]
, (2.3)

where x̃
(k)
i is the summed activity of the original variables inside clus-

ter i and Nk is the number of clusters at step k of the PRG. Notice
that, for totally independent random variables, one would expect the
variance to grow linearly in K (i.e., M2(K) ∝ K), while for perfectly
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2.2. RENORMALIZATION GROUP FOR NEURAL DATA.

Figure 2.1: Workflow of the phenomenological renormalization group analysis.
(a) The raw data is filtered for resting-state activity in regions with at least N = 128
recorded neurons. (b) For each region, activity is discretized in bins of width ∆t equal to
the geometric mean of the inter-spike interval (ISI) distribution. (c) The original system
is progressively coarse-grained by clustering together pairs of most-correlated neurons,
so that at step k each new variable contains the summed activity of K = 2k original
neurons. By changing the scale K, different properties are analyzed as we move towards
more coarse-grained descriptions of the system.
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correlated variables M2(K) ∝ K2. Non-trivial scaling is therefore
characterized by:

M2(K) ∝ Kα, (2.4)

with a certain intermediate value of the exponent 1 < α < 2.

2. The “free-energy” for the coarse-grained variables:

F (K) = − log (SK) , (2.5)

where, SK is the probability that a given coarse-grained neuron is
silent at any time step. As more and more of the original neurons,

σi , are grouped into cluster variables x
(k)
i , one would expect that the

probability of having “silent” block-neurons (i.e., the probability that
all neurons inside a cluster are silent) decreases rapidly with the size
K of the clusters, leading to:

F (K) ∝ Kβ, (2.6)

where, in particular, one expects an exponential decay (i.e., β = 1) for
initially independent variables, while β ̸= 1 reflects non-trivial scaling.

3. The autocorrelation function of the coarse-grained variables:

C(k)(t) =
1

Nk

Nk∑
i=1

⟨x(k)i (t0)x
(k)
i (t0 + t)⟩ − ⟨x(k)i ⟩2

⟨(x(k)i )
2
⟩ − ⟨x(k)i ⟩2

(2.7)

which, at the steady state, is independent of t0. Given that, commonly,
fluctuations at larger spatial scales relax with a slower characteristic
time scale, one should expect the autocorrelation function to decay
more slowly as one averages over more neurons. Assuming that cor-
relations decay exponentially in time with a characteristic time scale,

τ
(k)
c , at each coarse-graining step (i.e., C(k)(t) ∼ e−t/τ

(k)
c ) , dynamical

scaling implies that the average correlation function collapses into a
single curve when time is re-scaled so that:

C(k)(t) ≡ C(t/τ (k)c ), (2.8)

and that such a characteristic time obeys and scaling law with the
cluster size:

τc(K) ∝ Kz, (2.9)

where z is the dynamical scaling exponent.
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4. The covariance matrix for all the neurons inside clusters at step k of
the coarse-graining:

C
(k)
i,j =

1

Nk

Nk∑
l=1

⟨δσ(l)i δσ
(l)
j ⟩, (2.10)

where δσ
(l)
i = σ

(l)
i −⟨σ(l)i ⟩ is the activity of neuron i belonging to clus-

ter l, and the sum is over all Nk clusters of size K = 2k. As argued
in Meshulam et al. 2019, if correlations are self-similar across scales,
then we should see this by looking inside the clusters, as they are
analogous to spatially contiguous regions in a system with local inter-
actions. In particular, at a fixed point of the renormalization group
flow, the eigenvalues of the covariance matrix must obey a power-law
dependence on the fractional rank:

λ ∝
(

rank

K

)−µ
. (2.11)

At the light of the above scaling relations, in what follows we will employ
the introduced exponents α, β, z, and µ to characterize the potential scale-
invariant properties of neural activity in the mouse brain.

2.3 Quasi-universality across brain regions

By applying the previously introduced PRG to the activity of over one
thousand neurons in the CA1 region of the mouse hippocampus, Meshulam
et al.. observed the emergence of non-trivial scaling of the variance, “free-
energy” and autocorrelation times; as well as spatial scaling reflected in
the power-law dependence with the fractional rank for the eigenspectrum
of the covariance inside clusters (Meshulam et al. 2019). All these results,
which together evidenced the scale-invariant nature of the underlying neural
dynamics, gave suddenly a new life to the theory of criticality in real neural
networks.

To assess the robustness or possible universality of these findings, we
decided to use the PRG framework to analyze the activity of different re-
gions in the mouse brain. In particular, most of the forthcoming analyses
rely on the empirical electrophysiological data presented in Steinmetz et al.
2019, where the activities of thousands of individuals neurons in the mouse
brain were simultaneously recorded at a high temporal resolution (200Hz).
During the experiments, mice were trained to perform a perceptual task
that required vision, choice, action and behavioral engagement, but activity
was also recorded during periods of resting-state or spontaneous dynamics.
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Thus, in order to conduct a comprehensive analysis, we initially segregated
the original time series into “resting-state” and “task-induced” activity, fo-
cusing on the former for the purpose of our study (nevertheless, a compar-
ison between the observed scaling exponents for the two conditions can be
found in Appendix B.IV.§). In all cases, we restricted our analyses to areas
with at least N = 128 simultaneously recorded neurons, as reported in Fig.
2.1.

Before delving any further into the results, let us briefly mention one
important aspect that needs to be (and it is rather often not) carefully con-
sidered when dealing with correlation measures over time series. Typically,
studies involving neural recordings of activity, both at the single-neuron
level and at lower spatial resolution scales (EEG, fMRI, etc.), involve the
discretization of the time series into bins of a certain width ∆t, so that the
activity xi(tk) of neuron (or macroscopic region) i at bin k can be defined

as xi(tk) =
∫ tk+∆t
tk

xi(t)dt. Regardless of whether the bin size is chosen to
match the time resolution of the recording technique, a relevant timescale of
the input task, or it is just arbitrarily selected, the fact is that correlations
and correlation-based properties of the system may depend drastically on
the choice of ∆t (Neto et al. 2022; Cessac et al. 2017). This is especially
true for single-neuron activity, given that neurons within the same pop-
ulation can operate at broadly different time-scales, with rate frequencies
ranging from milliseconds to tens of seconds (see Appendix B.II and Fig.
B.1 therein).

To cope with such a heterogeneity, in the forthcoming analyses the rel-
evant timescale for each brain region (i.e., our choice of ∆t) is defined as
the geometric mean of the inter-spike interval (ISI) distribution across all
neurons (see Fig. B.1). As a sanity check, we observed that this choice of ∆t
reproduces to great extent the scaling exponents found in Meshulam et al.
2019 for the mouse hippocampus1 when using Steinmetz et al.’s recordings
for this very same area. Moreover, to ensure the consistency of the results,
we additionally confirmed that the documented exponent values show only
small variations when the time-discretization bin is changed, with the ex-
ception of µ, which displays an increase during longer time-scales beyond
the population activity’s typical inter-spike-interval (see Appendix B.IV.†
and Fig. B.6 therein).

Fig. 2.2 summarizes the analysis presented in Morales et al. 2023 for
the emergence of scale-invariant properties across RG steps. For the scaling
of the variance, free-energy and autocorrelation time, the goodness of each
power-law fit was estimated by means of its R-squared value and compar-
ing it with an equivalent exponential fit (see Appendix B.IV.∗, Fig. B.5).

1In the original work by Meshulam et al. spike trains were constructed using bin width
of ∆t ≈ 33ms, matching the sampling rate of 30Hz for the recording technique.
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Figure 2.2: Phenomenological RG analyses unveils the existence of quasi-
universal scaling over 16 different regions of the mouse brain. (a) Variance of the
non-normalized activity as a function of the cluster size, K (dotted lines with slopes 2 and
1, mark the fully correlated and independent limit cases, respectively). (b) Scaling of the
free energy, as defined in Eq. 2.5 (dotted line corresponds to the independent-variables
limit case). (c) Scaling of the characteristic autocorrelation time for coarse-grained vari-
ables. (d) Scaling of the average covariance matrix over clusters of size K = 16 (blue), 32
(yellow), 64 (green) and 128 (red) units, in one of the 16 considered brain regions. The
rank-ordered eigenvalues decay as a power law of the fractional rank (rank/K) and, even
more remarkably, the curves cut-offs at different values of the clusters size, K, collapse
into the same curve. To facilitate the comparison between regions with different number
of neurons, the first three measures were normalized by the value of each quantity at
K = 1 (e.g., M2(K) = M2(K)/M2(K = 1). Errorbars are computed as the standard
deviation across split-quarters of data, with lengths typically smaller than the marker
size.
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For the probability density of eigenvalues —which is directly related to the
observed scaling in the rank-ordered plot (see Appendix A.II)—, we com-
puted the log-likelihood ratios (Clauset et al. 2009) between the estimated
power-law and alternative exponential and lognormal distributions (see Ap-
pendix B.IV.∗, and Tables B.1 and B.2). Each exponent for a particular
region can then be expressed as e = ē + MAE + σ, where ē is the aver-
age across different experiments (measured over different mice), MAE is
the mean-absolute-error, computed as the average across experiments of
the individual experimental errors, which are in turn measured over split-
quarters of data, and σ is the standard deviation across experiments (see
Tables B.1 and B.2 for values of all measured exponents and their errors in
every region).

An almost perfect scaling for the variance, M2(K), of the non-normalized
activity of block-neurons is observed (Fig. 2.2a), with an average exponent
α = 1.38 ± 0.08 across all regions. In particular, we measure αCA1 =
1.37 ± 0.03 ± 0.02 for the CA1 region in the mouse hippocampus, which is
within errorbars of the value α = 1.56 ± 0.07 ± 0.16 reported in Meshulam
et al. 2018 for this same area. Notice how the exponent values for all the
regions are always between the expected ones for uncorrelated (α = 1) and
fully-correlated (α = 2) variables, revealing consistently the existence of
non-trivial scale-invariant correlations.

Meanwhile, the “free-energy” as defined in Eq. 2.5 also exhibits a clear
scaling with the cluster size (Fig. 2.2b), with an average exponent β =
0.79 ± 0.03 across regions (βCA1 = 0.78 ± 0.04 ± 0.05 for the hippocampus,
to be compared with the value β = 0.87±0.014±0.015 reported in Meshulam
et al. 2018).

Finally, temporal and spatial scaling are manifested in the curves shown
in Fig. 2.2c-d, respectively. The former is reflected in the observed dy-
namical scaling for coarse-grained neuron’s autocorrelation times τc(K),
with an average exponent z = 0.22 ± 0.05 across regions (also zCA1 =
0.18 ± 0.03 ± 0.01 for the CA1 area, in perfect agreement with the one re-
ported in Meshulam et al. 2018 for this region (z = 0.22± 0.08± 0.10), but
also compatible with the exponent values reported in Fagerholm et al. 2021
using a different approach). As an additional test for dynamical scaling, we
show in Appendix B.III.∗ (Fig. B.2) how the curves for the auto-correlation
functions at different coarse-graining levels collapse when time is appropri-
ately re-scaled. On the other hand, spatial scaling manifests itself in the
collapse of the covariance eingenspectra at different levels of coarse-graining
when plotted against the fractional rank (rank/K). For clarity, results are
only plotted for one of the regions (ACA), but we observed a clear power-
law scaling of the eigenvalues with the rank in all the analyzed brain areas
(see Fig. B.4 in Appendix B.III.†), with an average exponent across regions
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µ = 0.84 ± 0.14. Likewise, the value reported in Meshulam et al. 2019 for
CA1 (µ = 0.76 ± 0.05 ± 0.06) is in excelent agreement with our measured
value for the same region, µCA1 = 0.78± 0.08± 0.02. Since the spectrum of
covariance eigenvalues is known to be strongly sensitive to the samples-to-
neurons ratio, a0 = T/N (with N the number of recorded neurons and T the
number of samples, see Kong et al. 2017), we further verified in Appendix
B.IV.‡ that our choice of timebin width yielded a sufficient ratio, a0, as to
ensure the robustness of the exponents estimates (see Fig. B.7).

In addition to the above results, similar signatures of scale invariance to
those observed for resting-state activity emerge in PRG analyses of neural
activity recorded while mice are performing a task (see Fig. B.8 in Appendix
B.IV.§). In particular, we showed how the dispersion and mean values of
the scaling exponents across regions are not significantly altered (p > 0.1
on a two-sample t-test for each exponent) when comparing the resting-state
and task-induced activity. Nevertheless, such a comparison must be taken
with a grain of salt, as for non-resting-state activity we are far-off from
the equilibrium steady-state assumptions that underlie any Renormalization
Group analysis.

As a control test, we further verified in Appendix B.IV.¶ that the non-
trivial scaling features revealed by the PRG analyses are lost for all areas
when the correlation structure of the data is broken either by: (i) reshuffling
the times of individual spikes in the time series (Fig. B.9b); (ii) shifting each
individual time series by a random time span while keeping the sequence of
spikes (Fig. B.9c); or (iii) shuffling spikes across neurons (Fig. B.9c).

At the light of the above results, we can confidently state that strong
signatures of scale invariance with quasi-universal exponents are indeed ob-
served across brain regions. Is it however right to assume that such scale-
invariant properties naturally follow from an underlying critical dynamics?
The answer to this question is not straightforward as, for instance, an al-
ternative explanation to the phenomenology observed in Meshulam et al.
2019 was recently derived in terms of latent fields in a model with no criti-
cal point in its dynamics (Morrell et al. 2021). In the next section we will
tackle this problem not only by looking for signatures of criticality, but ac-
tually inferring from the data how far the underlying dynamics lies from a
critical point.

2.4 How far from the critical point?

Given an empirical system showing some degree of scale invariance, as
in the previously discussed experimental recordings of neural activity, can
we quantify how close it is to the edge of a phase transition or critical point?

We begin the following section presenting the simplest neuronal net-
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work model that exhibits a phase transition between two different regimes.
Working upon analytical results derived from this simple linear model, we
will then introduce two different methods that allow us to infer the distance
to criticality from neural recordings of activity, such as the ones analyzed
above for the dataset in (Steinmetz et al. 2019).

2.4.1 The linear rate model

Let us consider a very simple linear-rate model (LRM) in which the time
evolution ofN linearly interacting units is described by a continuous variable
xi(t) representing its activity or “firing rate” at instant t (Sompolinsky et
al. 1988; Hu et al. 2020). Neurons in this model interact with each other
through a synaptic connectivity matrix, J , and their dynamics is described
by the following continuous-time differential equation:

τ ẋi(t) = −xi(t) +
N∑
j=1

Jijxj(t) + ξi(t) , (2.12)

where, for each neuron, ξi(t) is a external input modeled for simplicity as
a zero-mean white noise with ⟨ξi(t)ξj(t′)⟩ = δijδ(t − t′); and τ is the char-
acteristic time scale for the firing rates changes. The synaptic connectivity
matrix is assumed to be random, with elements Jij sampled from a Gaussian
distribution with zero mean and variance σ2 = g2/N (i.e., J ∼ N (0, g2/N)).

A well-known result from random-matrix theory, the circular law, asserts
that for N → ∞ a random matrix with entries sampled from a Gaussian
distribution N (0, g2/N) has a spectrum of eigenvalues uniformly distributed
over a disc of radius λmax = g in the complex plane (Ginibre 1965; M. Mehta
1967; Girko 2005; Tao et al. 2010) (see Fig. 2.3a). Thus, denoting by I the
identity matrix, it is straightforward to see that the steady-state solution for
the system described by N coupled equations following Eq. 2.12 is stable
provided all the eigenvalues of the matrix (−I + J) are negative; this is,
when λmax = g < 1. In other words, the distance to the edge of instability
in this simple linear rate model can be fully characterized by the maximum
eigenvalue of the interaction matrix.

Let us note that the connectivity pattern described by a random matrix
J is far from being realistic in a biological sense. In particular, real neural
networks are expected to obey Dale’s law (Shu et al. 2003; Xue et al. 2014;
Liang et al. 2020), meaning that each presynaptic neuron form either only
excitatory or inhibitory connections with all connected postsynaptic neurons
(i.e., all elements along a column of the connectivity matrix should have the
same sign). Nevertheless, although the spectrum of such matrices does not
obey the circular law (Rajan et al. 2006), the results presented below can be

30



2.4. HOW FAR FROM THE CRITICAL POINT?

Figure 2.3: Statistics of pairwise covariances provide two different measures of
distance to the edge of instability. For each panel, we compare simulated results for
the linear-rate model (LRM) using 3 different values of g. (a) Entries of the connectivity
matrix Jij in the LRM follow a Gaussian distribution of zero mean and variance g2/N .
The spectrum of the matrix is contained in a circle of radius g in the complex plane (inset),
with λmax = 1 marking the edge of instability (black dashed line). (b) Entries of the
sampled spike-count covariance matrix Cij for N = 103. Histograms are re-scaled to their
maximum value for visualization purposes. (c) Maximum eigenvalue of the connectivity
matrix J as a function of the relative width of the distribution for the covariance matrix
entries. Full lines are drawn using Eq. 2.16 for different values of N , whereas circles are
obtained through simulations of the LRM for the 3 considered values of g (black dashed
line marks the edge of instability). (d) Distribution of the covariance matrix eigenvalues
in the LRM. Full lines are plotted using the analytical expression in Eq. 2.17, whereas
histograms are obtained from simulations. As g → 1 the tail of the distribution approaches
a power law with exponent ν = 5/3 (black continuous line).
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easily generalized to connectivity matrices where excitation and inhibition
are properly considered (Dahmen et al. 2019; Hu et al. 2020).

2.4.2 Using empirical correlations: a measure from the first
and second moments

In principle, one could possibly infer a connectivity matrix from experi-
mental recordings of activity by constructing maximum entropy models that
aim to match the observed mean and variance of the empirical correlations
(see, e.g., Cocco et al. 2022 and references therein). However, it has been
shown that activity-based estimates of connectivity tend to be biased to-
wards inferring links between unconnected but highly correlated neurons
(Das et al. 2020). Moreover, this approach involves an estimation of the
N2 entries of the connectivity matrix while, as we just saw, the dynamical
stability within the simple LRM approximation would be completely deter-
mined with only information about the largest eigenvalue of the connectivity
matrix.

Remarkably, we will see that an estimation of λmax can be obtained
from a measure of the pairwise covariance of the activity across neurons
(Dahmen et al. 2019). Notice that, compared to the synaptic efficacies
that would constitute the weights of a connectivity matrix, correlations
can be measured experimentally in a much simpler and robust way, since
large-scale simultaneous recordings of neurons have become more and more
attainable in recent years, thanks to the development of high-performance
neural probes (Steinmetz et al. 2021; Demas et al. 2021; Zong et al. 2022).

To find a relation between neural activity correlations and structure, one
first need to compute the so-called spike-count covariance matrix (sometimes
also called noise covariance or long-time-window covariance). The elements
of this matrix are pairwise covariances of the time-integrated activity across
many samples or trials, measuring the degree to which trial-to-trial fluctu-
ations from the average response are shared by a pair of neurons (M. R.
Cohen et al. 2011), i.e.:

Cij = lim
∆t→∞

1

∆t
⟨∆si(t)∆sj(t)⟩, (2.13)

where averages are taken over samples and ∆si(t) is computed as:

∆si(t) =

∫ t+∆t

t
xi(t

′) − ⟨xi(t′)⟩dt′. (2.14)

Notably, this covariance matrix is linked in a rather model-independent way
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to the underlying effective connectivity matrix J 2 through the following re-
lationship (Dahmen et al. 2019; Hu et al. 2020; Pernice et al. 2011; Trousdale
et al. 2012):

C = (I − J)−1(I − JT )−1, (2.15)

under the main assumption of uncorrelated inputs. A simple proof of this
equation is presented for the sake of completeness in Appendix A.I.

Despite the seeming simplicity of the above expression, one cannot naively
calculate J by inverting Eq. 2.15 for an empirically measured C matrix, be-
cause the recorded neurons represent only a small subsample of the whole
local network. To circumvent this difficulty, Dahmen et al. resorted to ideas
and tools from the physics of disordered systems, such as spin glasses, to
propose an estimator, ĝd, for the maximum eigenvalue λmax of the effective
connectivity matrix based on the relative dispersion of the elements in C
(Dahmen et al. 2019):

ĝd =

√
1 −

√
1

1 +N∆2
, (2.16)

where ∆ = δc/c̄, being δc the dispersion of the entries of the spike-count co-
variance matrix, calculated as the standard deviation of the out-of-diagonal
terms of C; and c̄ is the mean variance (i.e., the mean of the diagonal terms).

Thus, this rather elegant result provides us with an overall measure of
the network stability which depends only on the relative dispersion of pair-
wise covariance values and the system size. Moreover, the authors showed
that this result is insensitive to the details of the underlying dynamics and
connectivity, so that Eq. 2.16 still holds (as a linear-response approxima-
tion) when considering spiking-neurons dynamics or excitatory-inhibitory
connectivities (see Dahmen et al. 2019 and Ocker et al. 2017 for more de-
tails). As we will see in the following section, an alternative estimation of
λmax can be obtained using the full eigenspectrum of the empirical covari-
ance matrix.

2.4.3 Using empirical correlations: a measure from the spec-
tral distribution

In a mathematical tour-de-force, Hu and Sompolinsky took the theory
of linear rate models one step further, deriving an analytical form for the
full probability density of the long-time-window covariance eigenvalues in
the systems described by Eq. 2.12 (Hu et al. 2020):

2By effective connectivity matrix we will refer to the product of the anatomical connec-
tivity, weighted by synaptic efficacies, and the intrinsic excitability of individual neurons.
Thus, Jij can be understood as the change in firing probability of a postsynaptic neuron
i due to a single spike of a presynaptic neuron j (Dahmen et al. 2019).
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plrm(λ) =
3

1
6

2πg2λ2

[ ∑
ξ=1,−1

ξ

(
λ(1 +

g2

2
) − 1

9

+ ξ

√
(1 − g2)3λ(λ+ − λ)(λ− λ−)

3

) 1
3
]
, (2.17)

for λ− ≤ λ ≤ λ+, with:

λ± =
2 + 5g2 − g4

4 ± 1
4g(8 + g2)

3
2

2(1 − g2)3
, (2.18)

while plrm(λ) = 0 for values of λ out of the support (λ > λ+ and λ < λ−).
Observe, in particular, how the upper limit of the support, λ+, diverges in
the limit of g → 1 (i.e., close to the edge-of-instability), when the distribu-
tion develops a long (power-law) tail of large eigenvalues:

lim
g→1

plrm(λ) ∼
√

3

2π
λ−

5
3 . (2.19)

While the above analytical result was derived in the limit of N → ∞,
Fig. 2.3 shows that Eq. 2.17 match accurately the spectrum obtained
numerically in simulations of the linear-rate model with N = 103 units.
Thus, in practice, provided one has simultaneously recorded enough neurons
(on the order of hundreds) and has enough samples as to meaningfully
compute their covariance matrix (Kong et al. 2017), it is possible to infer the
dynamical regime of the recorded population simply by fitting the sampled
covariance matrix eigenvalue spectrum to the theoretical distribution given
by Eq. 2.17, using g as the fitting parameter. More concretely, we will be
earching for the value ĝs that minimizes the L2-norm using the Cramer-von
Mises statistics between the empirical cumulative distribution, Fn(λ), and

the theoretical one Flrm(λ) =
∫ λ
−∞ plrm(λ)dλ (Hu et al. 2020):

D2
CvM =

∫
(Flrm(λ) − Fn(λ))2dFn(λ) (2.20)

=
1

12n2
+

1

n

n∑
i=1

(
F (λi) −

2i− 1

2n

)
, (2.21)

where n is the total number of samples and λi are the eigenvalues of the em-
pirical long-time-window covariance matrix. This will constitute our second
method to estimate the distance to the edge-of-instability from data.

We remark that, although the above expression for the density of eigen-
values was derived assuming a linear-rate model of recurrently connected
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neurons, Hu and Sompolinsky showed that it provides also an excellent fit
to the numerical spectrum of a network of nonlinear rate neurons driven by
external noise, as well as for networks of generalized leaky integrate-and-fire
(LIF) neurons. Let us caution, in any case, that nonlinearities may intro-
duce a bias in the inferred value of g (see Hu et al. 2020 for more details).

2.4.4 All regions lay close to criticality

In this section, we will be applying the two different methods of es-
timating the maximum eigenvalue of the effective connectivity matrix, as
discussed above, to the previously introduced dataset of Steinmetz et al.
(Steinmetz et al. 2019). To avoid confusion, we will denote by ĝd and ĝs the
empirical estimates of the distance to criticality obtained using the actual
data from the relative dispersion of covariances (first method, as in Dah-
men et al. 2019) and their eigenvalue spectrum (second method, following
Hu et al. 2020), respectively.

First of all, since both methods rely on the computation of the long-time
window covariance matrix (Eq. 2.13), one first needs to split the original
time series of spiking activity for each neuron into T samples of width ∆t.
In practice, the condition ∆t → ∞ can be approximated by choosing a
time window large enough for autocorrelations to decay (Fig. 2.4.a for
one particular region). For this purpose, a characteristic time, τ , for each
region was obtained from an exponential fit to the average autocorrelation
decay time window. On the basis of these results (see Table B.1), a time
bin ∆t = 1s was chosen so that ∆t > τ while maximizing the number of
samples available.

The spike-count covariance, C, can then be computed for the activity
in each region after integrating the rates of individual neurons within the
previously defined time window (Fig. 2.4b shows the distribution of entries
for this matrix in one of the regions). We remark that, for this spike-count or
noise correlations to be meaningful, neural activity across samples must be
stationary, a condition that typically holds during recordings of resting-state
type of activity. Nevertheless, an augmented Dickey–Fuller test (Dickey et
al. 1979) was performed on each neuron time series to test this assumption,
showing that only a small percentage of all neurons within a region present
non-stationary spiking statistics (see Table B.1).

A first estimate of the distance to criticality in each region was ob-
tained using Eq. 2.16 following the method in Dahmen et al. 2019 (see
Fig. 2.4c). Notice, however, that our maximum eigenvalue estimator, ĝd,
strongly depends on the number of neurons being recorded and, since the
available empirical data heavily subsamples each region, direct application
Eq. 2.16 would actually underestimate the real value of λmax. To avoid
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Figure 2.4: Distance-to-criticality analysis locates the activity in 16 regions of
the brain near the edge-of-instability. (a) Decay of autocorrelations in the MOp
region (grey lines: 30 randomly chosen neurons; red line: average over neurons). (b)
Distribution of pairwise spike-count covariances in the MOp region. (c) For each region
(color coded), we computed ĝd(N) at different system sizes by subsampling the original
data. Points were then fitted to Eq. 2.16 to obtain an empirical estimate ĝd at a common
number of neurons N = 104. Only an average over such fitted curves (black line) is shown
for visualization purposes. (d). Covariance eigenvalues distribution for the MOp region,
together with the best-fitting MP distribution (green line) and the best-fitting eigenvalue
distribution for the LRM (red line, ĝs = 0.95). Inset: close-up in log-log scale. (e)
Estimated values of ĝd (dispersion method, Dahmen et al. 2019) and ĝs (spectral method,
Hu et al. 2020) for each of the 16 regions using the original number of neurons in each
area. In all cases, errors are computed as the standard deviation over different recordings
of the same region.
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this problem, but also to make a sensible comparison between regions with
different number of recorded neurons, we took random subsamples of the
recorded neurons to generate a curve, ĝd(N), of the estimated maximal
eigenvalue as a function of the network size. We then extrapolated the ex-
pected value of the estimator for a common (biologically realistic) number
of neurons N = 104 in each region. Fig. 2.4c shows the distance to the
critical point thus estimated, with errorbars computed as the standard de-
viation across experiments in each region. Notice that most values lie on a
very narrow window between ĝd ≈ 0.96 and ĝd = 0.99, with a mean value
ĝd = 0.978 ± 0.009, very close to the edge of instability

Alternatively, we saw that one can infer g from the best-fitting pa-
rameter, ĝs, minimizing the distance between the empirical and theoret-
ical eigenvalue spectra of the covariance matrix (Hu et al. 2020). To il-
lustrate this, in Fig. 2.4d (left) we plotted the empirical distribution of
covariance eigenvalues for an example region, together with the best fit-
ting distribution, plrm(λ), which was obtained for ĝs = 0.95, very close
to the critical value. Moreover, we report for comparison the best-fitting
Marchenko-Pastur eigenvalue distribution (i.e., the one expected for uncor-
related random variables), which clearly fails to capture the long tail of the
empirical eigenvalue distribution.

To conclude, Fig. 2.4d (right) presents a comparison of the two alterna-
tive estimates of the distance to criticality, ĝd and ĝs, for all the 16 mouse
brain regions analyzed when the original number of neurons in each experi-
ment is considered, revealing that —within errorbars computed across differ-
ent recordings of the same region— they are typically in excellent agreement.
Values for both estimates in each region can be found in Table B.1.

Thus, the above results let us conclude that all the analyzed regions are,
to greater or lesser extent, close to the edge of instability. Could one then
infer as well that the observed scale invariance has its roots on this underly-
ing, close-to-critical dynamics? Remember that the presented estimates of
the distance to the edge of instability are based on theoretical results over a
LRM, but could this simple model, if poised near its critical point, show any
scale invariance at all? While it has been shown that similar scale-invariant
properties can emerge in non-equilibrium systems like the Contact Process
(Nicoletti et al. 2020), we do not have any evidence that a simple LRM can
give rise to any kind of scaling behavior under renormalization. Investigat-
ing this potential link using the already introduced PRG framework will be
the motivation of our next section.
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2.5 Closing the loop: from critical models to scale
invariance

In this section we will be applying the PRG analysis proposed in Meshu-
lam et al. 2019 to the LRM described by Eq. 2.12, for which we can control
the distance to the edge of instability through the coupling parameter g. A
priori, one would expect to find non-trivial scaling for values of g close to
the critical coupling (i.e., g ≃ 1), but not when g ≪ 1. However, there is no
simple reason as to why the scaling exponents should be in principle similar
to the empirically measured ones. We also remark that, since we are dealing
with a stochastic rate model with a Gaussian external noise, neurons are
never really “silent” and so there is no well-defined free energy, F (K).

The following simulations were ran for networks of size N = 1024, choos-
ing an integration step h = 0.01 and setting the white-noise variance, σ2,
and characteristic time scale, τ , to one. The resulting time series were then
binned with a ∆t = 0.1 sampling window, before performing a PRG analy-
sis at different values of the control parameter g. Results for these analyses
are illustrated in Fig. 2.5; in particular they reveal that:

• The variance of the coarse-grained activity (Fig. 2.5a) scales with
cluster size with a trivial exponent α ≃ 1 for g ≪ 1, as expected for
independent units. However, for g = 0.95, —i.e., sufficiently close to
the edge of instability— it shows a non-trivial exponent α = 1.38, in
surprisingly good agreement with the average exponent measured for
the spiking neurons (ᾱ = 1.38 ± 0.08, Fig. 2.2b).

• The characteristic time for the autocorrelation functions (Fig. 2.5b)
of the coarse-grained variables shows a disruption of the scaling for
g = 0.2 and g = 0.6 at large cluster sizes, and a relatively small
powerlaw exponent z even when only the first few steps of PRG are
considered. Conversely, for g = 0.95 the scaling holds for the all the
considered cluster sizes and the measured dynamical scaling exponent
is very close to average experimental value (z̄ = 0.22±0.05, Fig. 2.2c).

• The rank-ordered eigenvalue spectrum (Fig. 2.5c) of the block-neurons
activity covariance matrix has a cut-off that drastically depends on
the cluster size for small values of the coupling parameter. On the
contrary, for g = 0.95 we observe a —not perfect but much better—
collapse of the curves at different levels of coarse-graining and a power-
law trend with an exponent close to the value measured across actual
brain regions (µ̄ = 0.84 ± 0.14 across all regions, Fig. 2.2d shows the
collapse for one example region).
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Figure 2.5: A phenomenological RG analysis over a simple linear rate model
shows signatures of scale-invariance when the system is close to the edge-
of-instability. In each column, we consider a different value of the overall coupling
strength g of the model. After a PRG analysis we then show (a) the variance of the
non-normalized coarse-grained activity; (b) the scaling of the characteristic autocorrela-
tion time for coarse-grained variables; and (c) the covariance matrix spectrum for the
activity in clusters of size K. Only the close-to-critical case (g = 0.95) do the simulations
show scaling behavior and power-law exponents similar to the ones observed in real data.
Parameter values for the LRM are taken as N = 1024, σ = 1 and τ = 1, for the number
of units, variance of the external white noise and membrane time-scale, respectively.

.
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The above results suggest that a simple LRM is indeed capable of cap-
turing a great part of the arising scale-invariant properties observed in bio-
logical neural networks under a PRG flow. Interestingly, the fact that the
observed scaling in the covariance eigenvalue spectra shows “better” power-
law scaling for the empirical data (Fig. 2.2d and Fig. B.4 in Appendix
B.III.†) as compared to the model (Fig. 2.5c), probably hints at some miss-
ing ingredient in our simple model to fully capture the observed spatial
scale invariance. It will be the scope of future work to analyze the effects of
including further features in the model such as non-linear activation func-
tions, heavy-tailed distribution of weights or heterogeneous characteristic
times scales for the neurons.

In the next section, however, instead of adding modifications to the
original LRM and try to link the observed behavior with an existing closet-
to-critical phenomenology in the brain, we will be taking a more exciting
path: we will look at the effects over the dynamical regime of the neurons, as
well as the possible emergence of scale-invariant properties when we modify
directly the connectivity structure of real neural networks.

2.6 Linking dynamics and structure

In the previous section we went over a minimal dynamical model that
showed scale-invariant properties only when poised close to a phase transi-
tion. Despite the success of this simple linear model in explaining most of the
phenomenology arising from a PRG analysis, little has been discussed on the
structural aspects of the neural network that allows for such behavior. How
does the connectivity structure among neurons affect the dynamical regime
of the network? Could homogeneous networks of randomly-connected real
neurons show the same scale-invariant properties, as a simple LRM would
suggest?

To address this question, we resorted to experiments on topographically
designed neuronal networks carried out by the group of J. Soriano, at the
University of Barcelona, consisting of in vitro neural cultures grown over a
printed circuit board (see Fig. 2.6 and Appendix I.† for a brief description
of the experimental methods). Neural cultures show spontaneous activation
and can even generate various forms of collective spatiotemporal patterns,
depending upon network connectivity features and the excitation-inhibition
balance (Tibau et al. 2013; Okujeni et al. 2017; Montalà-Flaquer et al. 2022).
Recently, it has been shown that not only the dynamical properties of the
cultures can be modified (for instance, by blocking inhibitory synapses,
thus altering the excitation-inhibition balance in the network), but also the
structural patterns that these continuously-evolving networks generate can
be conditioned by the topographical design of the surface on which they
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Figure 2.6: Experimental setup. (a) A silicon wafer with a topographic relief of
50 or 100 µm height was used as mould for pouring and curing PDMS. The resulting
design corresponds to a reverse-relief replication of the original mould. (b) Topographical
designs considered for the substrate, including a flat, control case; linear parallel tracks;
randomly placed squares and fourth-order Sierpinsky square fractal patter. (c) Electron
microscope images are parcelled into 732 region of interests (ROIs) in which we perform
all the analysis. (d) From left to right: bright-field image of the culture with connectivity
directed by a topographical pattern; three immunohistochemical images at different levels
of increasing magnification.

grow (Montalà-Flaquer et al. 2022; Yamamoto et al. 2023).

For all the experiments presented below, neurons were grown on a poly-
dimethylsiloxane (PDMS) substrate (Fig. 2.6a) composed of valleys and
slits that, in each case, were distributed following one out of four possi-
ble topographical designs: (i) a completely flat surface in which neurons
grew isotropically, thus serving as a control case; (ii) evenly-spaced, linear,
parallel tracks; (iii) randomly positioned squares; and (iv) a fourth-order
Sierpinsky square fractal pattern (see Fig. 2.6b).

In each experiment, 732 regions of interest (ROI) were defined within
the neural culture (Fig. 2.6c) and activity in each ROI, as measured by
average fluorescence intensity, was recorded over a 15-minute period (see
Appendix I.† for more details on the experimental protocol) . These traces of
fluorescence activity were then translated into spike trains using the Schmitt
trigger method, which considers a sharp change in fluorescence as a “spike”
in a ROI whenever the fluorescence signal passes a high threshold and then
stays elevated above a second lower threshold for at least 100ms. Once we
have access to the spike times of each neuron in the culture for the length the
recorded period, we constructed discretized trains of spikes using a timebin
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∆t = 10ms. In this way, all the information for a given experiment on one
the four topographical designs is collected in a matrix X ∈ RN×T , where N
is the number of ROIs and T the number of time bins contained in the 15
minutes of recording.

To get some intuition on the emergent spontaneous dynamics of these
neural cultures for the different topographical surfaces considered, we show
in Fig. 2.7a raster plots for the spiking activity of individual ROIs together
with the autocorrelation functions of the mean population activity (Fig.
2.7b) and the ISI distributions considering all ROIs (Fig. 2.7c). For the
isotropic case, neural cultures show large outburst of synchronous activity
followed by long quiescent periods, leading to fast-decaying autocorrelations
and average ISIs in the range of tens of seconds. Once heterogeneity in
the connections is induced, we observe a decrease in the rate of decay of
the autocorrelation functions, as well as changes in the shape of the ISI
distribution towards smaller average values. Interestingly, the most complex
dynamics in terms of temporal patterns of spiking activity seems to emerge
for neurons growing on a fractal substrate, concomitant with a broader
distribution of ISIs.

We can finally apply the same PRG analysis presented in section 2.2
to the matrix X containing the recorded activity for all neurons, looking
for signatures of scale invariance on each culture characterized by a given
underlying topographical substrate. Fig. 2.8 shows results of these analysis
across 8 coarse-graining steps for the variance, M2(K) (Eq. 2.4), free-energy,
F (K) (Eq. 2.5), and characteristic autocorrelation time, τc(K) (Eq. 2.9),
of the coarse-grained variables against the size, K, of the clusters; together
with the rank-ordered spectrum, λn (Eq. 2.11), of the activity covariance
matrix inside the clusters. Notice how, for the isotropic (control) case, we
observe a trivial scaling for the variance, close to the fully correlated case,
and no scale-invariance for the temporal and spatial correlations. Once we
add anisotropy into the neural substrates, the heterogeneity of connections
can give rise to exponents and scaling relations closer to the ones we observed
for different regions of the mouse brain in Section 2.3. However, notice how
only in the case in which neurons are grown over a fractal surface we find
the autocorrelation time of the coarse-grained variables, τc , to grow as a
power-law with the size K of the clusters.

The above results shed some light into the role of the structure on the
emergence of scale-invariant properties of the dynamics for real neural net-
works. Although a careful study of the actual connectivity patterns induced
by the underlying topographical surface is still much needed, we hypothesize
that neurons growing over a fractal surface not only develop heterogeneous
connections among each other, but also an increased hierarchical-modular
architecture for the overall network, a key ingredient that has been observed
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Figure 2.7: Heterogeneous connections leads to heterogeneous firing. For each
of the four topographical substrates considered (in columns), we show: (a) 100ms of a
raster plot for all recorded ROIs; (b) autocorrelation functions for the average population
activity; (c) ISIs distributions considering all recorded ROIs. To obtain the above results,
spike trains were constructed averaging the activity of each ROI across bins of width
∆t = 10ms.
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Figure 2.8: Non-trivial scale-invariance arises in neural cultures with a high
degree of network heterogeneity. Results are shown for four different topographies
of the circuit boards (in columns). At each step k of the PRG, in which the original
ROIs are grouped into clusters of size K = 2k, we plot: (a) the normalized variance,
(b) the normalized free-energy, and (c) the normalized autocorrelation decay times of
the coarse-grained variables. In (d) we show the rank-ordered spectrum of the covariance
matrix at different steps of the coarse-graining: K = 16 (blue); K = 32 (yellow); K = 64
(green) and K = 128 (red)

.
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in biological, in vivo neural networks (Meunier et al. 2010; Sporns 2010).
Interestingly, it has been shown that extended critical-like regions, known
as Griffiths phases, could emerge from such an existent structural hetero-
geneity (Moretti et al. 2013). Unfortunately, given the limited amount of
samples in the recordings —on the order of N/T ∼ 1 for any measure of
long-time-window correlations— it is not possible to provide a reliable es-
timate of the distance to criticality as we did in Section 2.4.4 using the
available experimental data.

So far in this chapter, we were able to exploit the potential of large-
scale single-cell recording techniques in both, in vivo and in vitro biological
neural networks, to unveil some of the fascinating phenomenology that, we
hypothesize, steams from an underlying critical dynamics. Unfortunately,
this type of microscopic measures —when performed in vivo— require in-
vasive techniques (see Appendix B.I) and are therefore typically unviable
for human subjects 3. When studying the human brain, neuroimaging tech-
niques such as EEG, fMRI or MEG can only provide spatially coarse-grain
measures of the neural activity (or a related quantity, in the case of fMRI).
Could we still investigate the underpinnings of the critical hypothesis from
these types of measures in the human brain? The last part of this chap-
ter is devoted to some preliminary, yet fascinating, connections between
frequency-dependent criticality and neurological disorders.

2.7 Beyond zero-frequency criticality in the hu-
man brain

Our estimates for the distance to a phase transition of a given recorded
neural dynamics, as employed in Section 2.4.4, have been counting so far on
spike-count or noise correlations. This type of long-time-window measures
integrate out all potential correlations that could emerge at shorter time
scales, reflecting only the tendency of neuron pairs to co-fluctuate around
their average rate. To capture temporal correlations beyond this slow time-
scale, one can generalize the notion of covariance to the frequency domain,
defining a frequency covariance matrix (also known as coherence matrix)
as:

S(ω) = F [C(T )] = ⟨x(ω)x†(ω)⟩ (2.22)

where x(ω) is the Fourier transform of the neural signal x(t), and x†(ω)
is its complex conjugate. Hence, S(ω) generalizes the notion of covariance

3To this day, current existent measures of human brain single-cell activity come mostly
from invasive epilepsy monitoring using the so-called “Behnke-Fried” electrodes, or record-
ings of deep brain stimulation (DBS) electrodes in Parkinson’s or other neurological dis-
orders.
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matrix measuring the strength of the dependency between nodes at a given
frequency ω.

By the Wiener-Khintchine theorem (Wiener 1930; Khintchine 1934),
S(ω) can also be computed as the Fourier transform of the time-lagged
cross-correlation function, which is given by:

C(τ) = ⟨x(t)xT (t+ τ)⟩. (2.23)

In fact, the long-time-window covariance used for the distance-to-criticality
estimation arises as a particular case of the coherence matrix at zero fre-
quency, i.e., S(ω = 0) = C∞. For a stochastic linear model driven by exter-
nal white-noise, as the one described by Eq. 2.12, an analytical expression
for the time-lagged correlation can be obtained:

C(τ) =

{
C0 e

−JT τ , τ > 0

eJτC0, τ < 0
(2.24)

Using again the Wiener-Khintchine theorem, the coherence matrix for the
stochastic linear model can then be written as:

S(ω) = F [σ(T )] = (J + iωI)−1 (JT − iωI
)−1

. (2.25)

Consequently, S(ω) is an Hermitian, positive definite matrix, with an spec-
tral distribution defined on the real line, R, making it suitable to interpret
their eigenvalues and corresponding eigenvectors as principal components
(in the PCA language) at the given frequency. Eq. 2.25 can be written in
a more convenient form,

S(ω) = |a(ω)|2(I− a(ω)gW )−1(I− a†(ω)gW )−T (2.26)

where a(ω) = (1 + iω)−1 and we defined J ≡ gW . Note that |a(ω)|2 is
nothing but the power-spectrum of an Ornstein-Uhlenbeck noise. Hence,
Eq.2.25 takes the form of the expression for the long-time-window correla-
tion (Eq. 2.15), with an effective coupling parameter, g̃(ω) = a(ω)g, and a
pre-factor given by the coefficient |a(ω)|2 of the power-spectrum. As a word
of caution, we remark that it is convenient to work with the normalized co-
herence matrix, divided by the power-spectrum coefficient |a(ω)|2, in order
to compare in a consistent way the shape of S(ω) for different values of ω.

In the simplest case, for which the elements of J are drawn as indepen-
dent and identically distributed (iid) Gaussian variables, J ∼ N (0, g2/N),
the spectral density of S(ω) follows the distribution given by Eq. 2.17 with
an effective coupling parameter:

ĝ(ω) =
g√

1 + ω2
. (2.27)
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We remark that, although coherence is perhaps the most common approach
as a frequency-domain version of the covariance matrix, it is still based on
second-order statistics (i.e., power spectra) and is therefore only sufficient
when the time series being considered are Gaussian processes. Considering
that neural signals are almost certainly not Gaussian (Malladi et al. 2018),
full statistical dependence will not be quantified by coherence when used on
such signals.

Nevertheless, knowing that on larger spatial scales synchronization ef-
fects can give rise to collective modes of brain dynamics at particular fre-
quencies, we set out to quantify a frequency-dependent distance to critical-
ity on magnetoencephalography (MEG) neural data of resting-state patients
from the OMEGA dataset (Niso et al. 2016), which includes recordings from
healthy, control subjects, and patients that suffer from Parkinson’s disease.
In particular, within each group we choose those patients with at least 20
minutes of total recorded time, which left us with 6 subjects on the control
group and 8 subjects in the Parkinson’s group (see Appendix BI for more
details on the structure and pre-processing of the data). Once again, to
ensure a sufficient samples-to-size ratio we divided the original length of the
recordings over 480 chunks or samples, each of 2.5s of duration, over which
we then computed the frequency-dependent correlations using Eq. 2.22.

Fitting now, for each considered frequency ω on the range between 0
and 50Hz, the spectrum of the estimated coherence matrix S(ω) using the
theoretical expression given by Eq. 2.17, we obtained an estimate ĝs(w) of
the distance to criticality at the given measured frequency. Since we are
already taking the theoretical results derived in Hu et al. 2020 very far from
their original context of a simple LRM, for the results presented below we
will not focus our attention on the exact value of the estimator ĝs(w), but
rather on its relative magnitude with respect to the long-time-window or
zero-frequency covariance case, ĝs(0).

Interestingly, for the healthy patients, these analysis revealed the ex-
istence of close-to-critical frequency modes beyond the slow time scale as-
sociated to ω = 0 (see Fig. 2.9a). In particular, we observed how the
relative distance to the edge of instability, as given by ĝs(w)/ĝs(0), peaked
for frequencies near the alpha band (i.e., ∼ 8 to 12 Hz) in this control group.

This peak, however, was not present for the neural time series of pa-
tients with Parkinson disease, for which the distance to criticality was rather
consistently high across a large range of frequencies before dropping signif-
icantly. These results seem to be in agreement with experimental observa-
tions arguing that patients with Parkinson’s disease had altered alpha and
theta oscillations in the parietal region of the brain (Ye et al. 2022), un-
veiling the importance of brain dynamics and, in particular, of the relative
distance to criticality in different frequency-dependent modes of activity, for
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Figure 2.9: Parkinson patients show a broader range of close-to-critical frequen-
cies. In both, the control (a), and Parkinson (b) groups, each colored curve represents
measures of the distance to criticality for one patient at different frequencies, while the
black solid curve represents is an average over all available patients in each group. The
alpha band, typically located between 8 and 12Hz, is highlighted in yellow for the control
group.

the correct functionality of the brain.

2.8 Conclusions and perspectives

In this chapter we observed how the scale-invariant nature of neural ac-
tivity in the mouse brain emerges under a phenomenological renormalization
group flow, resembling closely what happens at critical points of continu-
ous phase transitions. In fact, the so-determined scaling exponents exhibit
little (yet some) variability across brain regions, so we referred to them
as been “quasi-universal”, in seeming analogy with universality in critical
phenomena.

Setting out to quantify the actual distance of empirical data to the edge
of instability, we found that all 16 regions analyzed turn out to be relatively
close to the edge of instability. Although interpreting the reason behind
the differences in the distance to criticality across regions remains an open
and challenging goal, we speculate that this variability could be related
to a hierarchy of information flow in the brain organization. Fig. 2.10a
shows some preliminary results supporting this hypothesis, representing the
distance to criticality against an estimated hierarchy score for each region
—as defined in Harris et al. 2019— with low (high) scores corresponding
to sensory (higher-level) areas. Notice how sensory areas such as primary
cortices MOp and SSp (with low scores; see, e.g., Fig. 6 in Harris et al. 2019)
tend to operate closer to the edge of instability than secondary cortices
(such as MOs) or areas in the prefrontal cortex (such as ORB, PL, and
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Figure 2.10: Low-hierarchy regions show a dynamics closer to the edge of insta-
bility. (a) Hierarchy score, as quantified in Harris et al. 2019 against estimated distance
to criticality. Regions are colored according to their score value. (b) Values of the average
scaling exponents, α, β, z and µ, observed in each region against the estimated distance
to criticality. For each exponent, we fit a linear regression to the data points, showing the
correlation coefficient, r, and p-value to reject the null hypothesis that there is no linear
relationship between 2 variables.

ACA). This seems to suggest that there could exist a relationship between
the dynamical regime of a given area and its hierarchical score, with low-
score regions being more “critical”. On the other hand, a clear trend is not
observed in thalamic regions LGd, and MG (Fig. 2.10a)

During this chapter, we argued that the scale-free properties observed
across all regions could arise from a close-to-critical dynamics. Is there,
however, any relation between the variability in the scaling exponents and
our estimates for the distance to criticality? Fig. 2.10b shows, for every
region, each of the computed exponents against the estimated distance to
the critical point. Interestingly, a statistically significant linear dependence
seems to exist between the estimated distance, ĝd, and the exponents µ
(r = 0.67; p < 0.01) and α (r = 0.57; p < 0.01), whereas such relation
can not be ascertained with a 5% significance level for the exponents of the
free-energy and autocorrelation times.

Following with the results, we found that a very simple linear-rate model
tuned to the vicinity of its critical point generates scale-invariant patterns
of activity, with associated critical exponents that match remarkably well
those observed for the resting-state activity across brain regions. Under-
standing whether more elaborate models (including spiking neurons, non-
linear interactions or fulfilling Dale’s rule, for example) do behave in the
same universal way or can even provide a better description of the scaling
features of biological neural networks remains as an open task for the future.

Aiming at understanding the role of structure in the emergence of scale-
invariant properties, we performed a PRG analysis over topographically-
designed neural cultures. We showed that heterogeneity (and possibly a
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hierarchical-modular architecture) in the network structure are ingredients
that can affect the dynamical regime of the network and, consequently, its
scaling behavior. To what extent this type of architectures push the net-
work towards an underlying close-to-critical dynamics, as well as a detailed
analysis of the effective connectivity patterns emerging under different types
of topographical substrates will be the scope of future work.

Finally, we moved away from the microscopic, single-neuron recordings
to measures of MEG activity over macroscopic regions of interest (ROIs)
in the brain. In particular, we studied whether neural systems could show
close-to-critical dynamics in the temporal structures of correlations beyond
the slow time scale given by the long-time-window (or zero-frequency) co-
variance. Remarkably, a clear peak in the relative distance to criticality
(with respect to the zero-frequency mode) was observed in healthy patients
for frequencies in the alpha band, while these peaks were consistently flat-
tened out in the measures carried over patients with Parkinson’s disease.
We notice that this preliminary results seems to be in agreement with pre-
vious studies linking critical dynamics and Parkinson’s disease Hohlefeld et
al. 2012; West et al. 2016; Zimmern 2020. In particular, in West et al. 2016
the authors used a detrended fluctuation analysis to conclude that patients
in more severe stages of Parkinson’s disease presented a dynamics closer
to the onset of a pathological synchronization, towards a possible hyper-
synchronized critical state. Our results could indeed provide new light into
this hypothesis, as they seem to reveal the specific frequency-modes of ac-
tivity that show an “overly-critical” dynamics when compared to healthy
brains, adding to the number of works that highlight the relevance of the
critical hypothesis approach also at a clinical level (Zimmern 2020).
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Chapter3

Learning machines learn to learn

“In terms of evolutionary history, it was
only yesterday that men learned to walk
around on two legs and get in trouble
thinking complicated thoughts.
So don’t worry, you’ll burn out.”

Haruki Murakami, The Wind-Up Bird
Chronicle



CHAPTER 3. LEARNING MACHINES LEARN TO LEARN

3.1 Introduction to Echo State Networks

Many of the ideas behind the theory of criticality presented in Chapter
1 and tested in Chapter 2 can be also extended to the realm of artificial
neural networks. In fact, advances in the area of machine learning (ML)
have explored since the eighties the idea of computation at the “edge-of
chaos” (Packard 1988; Langton 1990; Bertschinger et al. 2004). Over the
past decade, new exciting works have emerged at the boundary of machine
learning and statistical mechanics, which explored, for instance, the connec-
tion between the Renormalization Group (RG) and Deep Learning (Koch
et al. 2020; P. Mehta et al. 2014; Oprisa et al. 2017), or the emergence of
optimal computational capabilities near phase transitions in neuromorphic
devices (Hochstetter et al. 2021). Nevertheless, the increasing complexity
of current state-of-the-art machine learning models, together with the de-
tachment of these models from biologically-plausible architectures (such as
recurrent neural networks (RNN)s), hinders our ability to fully characterize
and control the dynamical regime of learning machines. Can we find a ML
framework that can naturally exploit the virtues of systems operating near
a critical point, while remaining biologically plausible and tractable from
the perspective of their dynamics?

The answer to this question would arrive with the beginning of the new
millennium. While a growing machine learning (ML) community was still
thawing out from the second AI winter (Fradkov 2020), a new approach
to training RNNs, later coined under the common term of Reservoir Com-
puting (RC), was discovered independently on two different architectures:
the Echo State Network (ESN) in a rate-based, discrete-time model of non-
linear units (Herbert Jaeger 2001b); and the Liquid State Machine (LSM)
for a biologically-inspired model of continuous-time spiking neurons (Maass
et al. 2002). Both paradigms were built upon the idea that, under certain
conditions, the state of an RNN can be understood as a function of the
input history presented to the network. Not surprinsingly, results showing
how these types of networks could exploit the combined advantages of sta-
bility (order) and responsiveness to inputs (disorder) when they operate at
the borderline between order and “chaos”, appeared only a few years after
the invention of this machine learning paradigm (Bertschinger et al. 2004;
Boedecker et al. 2011).

In the following two chapters, we will focus our attention into the discrete-
time ESN. The simplicity of its architecture, consisting of an input and out-
put layers connected through feed-forward weights to a recurrent network
(the reservoir), together with a fast and computationally much less expen-
sive training compared to previous RNN models, make these networks espe-
cially well-suited for learning dynamical systems, even when those display
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chaotic or complex spatiotemporal behavior (Pathak et al. 2017; Pathak
et al. 2018).

As we will see in a the next section, the simplicity of the training in
the vanilla ESN emerges from the fact that only weights at the output
layer are adjusted, while input-to-unit and unit-to-unit connections are left
unchanged from their initial random values. Although very flexible, this
approach also leaves the open question of how to design the reservoir con-
nectivity so as to maximize the performance of the network in a given task.
While most reservoir computing approaches consider a reservoir with fixed
internal connection weights, plasticity was rediscovered as an unsupervised,
biologically inspired adaptation to implement an adaptive reservoir. It ap-
peared first as a type of Hebbian synaptic plasticity to modify the reservoir
weights (Babinec et al. 2007), but soon the ideas of non-synaptic plastic-
ity that inspired the first intrinsic plasticity (IP) rule (Triesch 2005) were
also implemented in an ESN (Schrauwen et al. 2008). After that, several
different models of plasticity have been implemented in RC networks with
promising results (Steil 2007; Yusoff et al. 2016; X. Wang et al. 2019). To-
day, the fact that biologically meaningful learning algorithms have a place
in these models, together with recent discoveries suggesting that biological
neural networks display RCs’ properties (Ju et al. 2015; Enel et al. 2016),
make RC a field of machine learning in continuous growth.

From a functional perspective, ESNs have shown to successfully perform
in a wide number of tasks, ranging from speech recognition (Skowronski
et al. 2007), channel equalization (Herbert Jaeger et al. 2004), or robot
control (Hertzberg et al. 2002), to stock data mining (Lin et al. 2008). Here,
we will focus in the challenging problem of chaotic time series forecasting.
This type of task has been addressed extensively in the scientific literature
(Babinec et al. 2009; Lin et al. 2009; Yusoff et al. 2016; H. Wang et al. 2019),
and ESNs implementing plasticity rules to improve time series forecasting
have also been treated before (Yusoff et al. 2016; H. Wang et al. 2019;
Babinec et al. 2007). However, a real understanding of the effects of this
type of unsupervised learning over the dynamical state of the reservoir is
still missing.

Despite the overall simplicity of these networks (and much like in any
type of ML model), their performance over different types of tasks is still
subject to the daunting problem of parameter selection. Therefore, in this
section we first introduce the overall framework upon which ESNs are con-
structed, beginning with their architecture and following with the equations
governing the reservoir dynamics, highlighting the role of each tunable pa-
rameter within the model.
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Figure 3.1: Architecture of an archetypical Echo State Network. Inputs are
filtered through feed-forward connections W in into a reservoir consisting of N recurrently-
connected non-linear units. The internal states of these units are then projected for read
out through a second feed-forward connectivity matrix W out, generating the output of
the network.

3.1.1 Architecture

Fig. 3.1 shows a schematic representation of the three fundamental
ingredients that constitute a vanilla Echo State Network, but that are also
present in any more complex version of the original model (Lukoševičius
2007; H. Jaeger 2008; Sussillo et al. 2009; Büsing et al. 2010; DePasquale
et al. 2018; Chen et al. 2020).

The core of an ESN lies in its reservoir, where a number Nx of time-
discrete computational units1 communicate with each other through a sparse
recurrent connectivity matrix W res ∈ RNx×Nx . Typically, these connections
are randomly initialized according to a uniform or Gaussian distribution ,
although extensive work has been devoted to find optimal initializations for
this connectivity matrix (Rad et al. 2010; Rodan et al. 2011; H.-T. Fan et al.
2017; Aceituno et al. 2020; Saadat et al. 2023), as well as plasticity rules
that could evolve the recurrent weights to learn some characteristic features
of the input distribution (Babinec et al. 2007; Yusoff et al. 2016; H. Wang
et al. 2019). As a thrilling new line of research at the boundary of ML
and neuroscience, we highlight the recent work of Damicelli et al. 2022 that
aims to integrate real brain connectomes into the reservoir structure, al-
lowing researchers to probe the influence of brain connectivity patterns and
modularity into the reservoir computing framework. From a more computa-
tional perspective, the recently uncovered equivalence of ESNs to nonlinear
vector autoregression, which requires no random matrices and fewer hyper-
parameters, seems to open the door to a whole new generation of reservoir
computers (Gauthier et al. 2021).

1Although we will commonly refer to the individual elements of the reservoir as “units”,
in some contexts we may use the term “neuron” (in a very generic sense) to draw a
parallelism with biological neural networks.
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Following the diagram depicted in Fig. 3.1, at each time step every
unit inside the reservoir updates its state according to the activity of other
pre-synaptic units and the incoming external signal from the Nu input
units. Synaptic connections with these input units take place through a
feed-forward weight matrix W in ∈ RNx×Nu —typically dense and drawn
randomly from a uniform distribution. Finally, a set of Ny output units
connected to the reservoir through a matrix W out ∈ RNy×Nx reads out the
state of the reservoir at each time step. Although this output matrix is typ-
ically initialized following the same distribution as W in, it has been shown
that pruning and regularization of the output weights can lead to an increase
in the generalization capability of the network (Dutoit et al. 2008).

In practice, we remark that the number of units inside the reservoir is
much larger than the dimensionality of the input space, so that the reservoir
effectively acts as a non-linear expansion of the inputs (Lukoševičius 2012).
In fact, reservoirs can be understood as general spatiotemporal kernels, ca-
pable of computing a broad set of nonlinear mappings of the input data, on
which linear regression or classification can easily be performed (Hermans
et al. 2012). Moreover, as we will see in the following section, within a broad
region of the parameter space the states of the reservoir units hold a “mem-
ory” of the inputs, providing a temporal context that is well-suited for time
series prediction tasks. In the next section we introduce the discrete-time
equations governing the dynamical state of the units inside the reservoir,
while deepening our understanding of the properties that make ESNs great
learners of temporal dependencies.

3.1.2 Internal dynamics and the Echo State property

Let u(t) ∈ RNu be a multivariate input signal of dimension Nu (see Fig.
3.1) defined at discrete time steps t = 1, ..., T , where T is the total length
of the input time series. At each time step, the input, previously filtered
through a weight matrix W in ∈ RNx×Nu is then fed to the Nx internal units
of the reservoir, whose states x(t) ∈ RNx evolve according to the following
discrete-time equation:

x(t) = tanh(εW inu(t) + ρW resx(t− 1)), (3.1)

where the internal connections between units in the reservoir are given by
W res ∈ RNx×Nx , defined as a sparse matrix with unitary maximum eigen-
value (i.e., W res ≡ (1/ρ̃)W̃ res, where W̃ res is a sparse matrix with maxi-
mum eigenvalue ρ̃ ). In the above equation, the input scaling factor, ε, and
the spectral radius or largest eigenvalue of the effective connectivity matrix,
ρ, are the two fundamental parameters that will determine the dynamical

55



CHAPTER 3. LEARNING MACHINES LEARN TO LEARN

regime of our networks 2. For the rest of this chapter, we chose the hyper-
bolic tangent as our activation function, but other nonlinear functions are
equally valid.

The spectral radius determines, under linear approximation, the dy-
namical stability inside the reservoir when no input is fed into the network.
Thus, a spectral radius exceeding unity has been often regarded as a source
of instability in ESNs due to the loss of the so-called echo state property, a
mathematical condition ensuring that the effect of initial conditions on the
reservoir states fades away asymptotically in time (Herbert Jaeger 2001c;
Herbert Jaeger 2001a; Yildiz et al. 2012). Nevertheless, later studies have
shown that the echo state property can be actually maintained over a uni-
tary spectral radius, and different sufficient conditions have been proposed
(Buehner et al. 2006; Yildiz et al. 2012; Gallicchio 2018) (see in particular
Manjunath et al. 2013, where the authors analyze the problem from the
lens of non-autonomous dynamical systems, deriving a sufficient condition
for the echo state property with regard to a given input). Intuitively, the
larger the spectral radius, the more weight is given to the “history” of the
system through the contribution of the past states of the reservoir.

On the contrary, the input scaling factor often shows an opposite role.
For larger values of ε, the inputs push the activity arriving to each unit
towards the saturating ends of the non-linearity, and can make the states
effectively act in a binary switching manner, potentially converting an ini-
tially expanding mapping into a contracting dynamics (Lukoševičius 2012).

In the next section we will introduce the main ideas behind the super-
vised training and testing protocols used along with Echo State Networks.
For the purpose of this chapter we will focus on the typical setup for a time-
series prediction task, but a training protocol for an image-classification
task will be presented in Chapter 4, when studying the reservoirs high-
dimensional internal representations.

3.2 Training and testing for a time-series classifi-
cation task

Let us first begin providing some general rules regarding the pre-processing
of the training set. To facilitate the comparison between the performances
of two networks with the same set of hyper-parameters over two different
training sets, it is first advisable to standardize the input time series so that
they always have zero mean and unitary standard deviation. Alternatively,

2In the literature, one typically finds Eq.3.1 to be written in terms of an effective reser-
voir connectivity matrix W res

eff := ρW res. Here, we decided to factor out the contribution
of the spectral radius to highlight the confronting roles of ε and ρ.
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one can divide the series by their maximum absolute value, effectively forc-
ing them to lie in the [−1, 1] interval. Moreover, if u(t) is unbounded and
one expects the presence of strong outliers, it is also a good practice to
bound the training and test data (for instance, squashing it with a tanh
function). Otherwise, the reservoir dynamics could respond to these out-
liers by jumping into points of its phase space that are not well covered by
the usual trajectories of x(t), leading to unpredictable outputs or saturating
activities that ”erase” the memory stored through the echo-state property
(Lukoševičius 2012).

The basic training protocol for a time-series prediction task is schemat-
ically depicted In Fig. 3.2. Once the training data has been correctly pre-
processed, the input series is filtered at each time step by a weight matrix
W in ∈ RNx×Nu , which is typically dense and drawn from a uniform distri-
bution in the [-1, 1] range, and the states of the units inside the reservoir are
updated following Eq.3.1. The above formulation, with a common scaling
factor for all inputs, is considered the standard practice to avoid increasing
the number of tunable hyperparameters. However, in some cases it might
be also useful to define a vector ε ∈ RNu if, for instance, we think that some
dimensions of the input should be weighted more strongly (Lukoševičius
2012).

On the other hand, as already introduced in the previous section, an
initial sparse connectivity matrix W̃ res is typically drawn from a uniform
distribution with symmetric range around zero (although zero-mean Gaus-
sian distributions are also commonly employed). Then, the width of the
non-zero weights distribution, given by the matrix largest eigenvalue, is re-
scaled so that the effective connectivity matrix have a spectral radius ρ:
W res
eff = ρW res = (ρ/ρ̃)W̃ res, where ρ̃ is the maximum eigenvalue of W̃ res.

At each time step during the presentation of the training series, the
states of the neurons in the reservoir produce the final output after be-
ing linearly filtered by a random matrix W̃ out ∈ RNy×Nx (whose elements,
for simplicity, follow the same distribution as those in W in), so that the
dynamics of the readout states is given by:

ỹ(t) = W̃ outx(t), (3.2)

where ỹ(t) ∈ RNy is the Ny-dimensional output. Using a supervised learn-
ing scheme, the goal of the training is to find the output weights W out

so that y(t) not only matches as closely as possible a desired target series
ytarget(t) ∈ RNy , but can also generalize to unseen data. Because large
output weights are commonly associated to overfitting of the training data
(Lukoševičius 2012), it is a common practice to keep their values low by
adding a regularization term to the error in the target reconstruction. Al-
though several regularization methods have been proposed (Herbert Jaeger
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Figure 3.2: Training protocol for a time-series forecasting task. At each time step
a point of a (possibly multivariate) time series u(t) is projected through a matrix W in

into the N units of the reservoir. For the length T of the training series, reservoir states
are collected into a matrix X ∈ RN×T . Output weights W out are then computed offline
through a ridge regression over the reservoir states for a given target series, typically
involving a one-step-ahead prediction of the input (i.e., ytarget(t) = u(t+ 1)).

2001b; Dutoit et al. 2008; R. Felix Reinhart et al. 2010; René Felix Reinhart
et al. 2011), here we use the ridge regression method, for which the error is
defined as:

Eridge =
1

Ny

Ny∑
j=1

(
1

T

T∑
t=1

(
ytargetj (t) − yj(t)

)2
+ β

∥∥wout
j

∥∥2) , (3.3)

where wout
j are the projection weights of all reservoir neurons to the j-th

output (i.e., the j-th row of W out), ∥·∥ stands for the Euclidean norm and
β is the regularization coefficient, which sets a penalty for large values of
the output weights. Notice that choosing β = 0 removes the regularization,
turning the ridge regression into a generalized linear regression problem.

Defining Y target ∈ RNy×T as the matrix whose columns are the output
targets ytarget(t) at each time t, and X ∈ R(Nu+Nx)×T the design matrix
consisting of all concatenated vectors [x(t);u(t)], the expression for the
optimal readout weights W out that minimizes the above error can be easily
obtained (Lukoševičius 2012) as:

W out = Y targetXT
(
XXT + βI

)−1
, (3.4)

where I is the identity matrix. The above solution, also known as regression
with Tikhonov regularization (McDonald 2009), is highly stable and, more
importantly, because the terms Y targetXT ∈ RNy×(Nu+Nx) and XXT ∈
R(Nu+Nx)×(Nu+Nx) do not depend on the length T of the training series,
they can be easily update online during the presentation of the inputs for
arbitrary large training data. Nevertheless, there exists other solutions that
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Figure 3.3: Test protocol for a time-series forecasting task. The network runs in
generative mode for Ttest time steps. Beginning with an initial input seed u(0), at each
time step t the network output y(t) serves as input, ũ(t+ 1), at the next time step.

are widely used, such as:

W out = Y targetX+, (3.5)

where X+ is the Moore-Penrose pseudoinverse of X (Penrose 1955). Alter-
natively, it has been shown that adding a simple scaled white noise to Eq.
3.1 for the reservoir states update produces a similar regularization effect
to ridge regression (Lukoševičius 2012), while being at the same time more
biologically grounded.

In most cases, the output weights are trained in a one-step-ahead pre-
diction task, in which the network output at time t is required to be the
next point u(t+ 1) of the input time series (i.e., ytarget(t) = u(t+ 1)). The
predictive ability of the network is then assessed by asking the network to
continue from the end of the training series in generative (also known as
autonomous) mode, meaning that the reservoir takes its former output at
time t as input at time t + 1 (see Fig. 3.3). Different measures have been
designed to quantify the goodness of predictions in time-series forecasting
tasks, including the standard root mean-square error (RMSE):

RMSE =
1

Ny

Ny∑
j=1

(
1

T

T∑
t=1

(
ytestj (t) − yj(t)

)2)
, (3.6)

and the furthest predicted point (FPP) (Morales et al. 2021a), defined as:

FPP := max{k : |ytest(k′) − y(k′)| ≤ ϵ ∀ k′ ≤ k}, (3.7)

where ϵ is some arbitrary small threshold value.
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3.3 Plasticity models in ESNs

Since there exists a plethora of plasticity mechanisms that biological
neural networks can employ to learn from the incoming stimuli (Abbott et
al. 2000; Mozzachiodi et al. 2010; Berlucchi et al. 2008; Watt et al. 2010),
it is useful, when trying to translate this type of learning rules into a RC
framework, to categorize them into two distinct families: rules that aim at
modifying the recurrent weights W res of the reservoir (synaptic plasticity),
and rules which alter the inner excitability of the reservoir units (intrinsic
plasticity). In this manner, changes are based on the activity stimulated
by the input, so that information carried by the training signal is partly
embedded in the structure of reservoir.

As we saw in the previous section, one of the advantages of the RC
paradigm is its simple and efficient —since typically offline— learning frame-
work, which trains only a set of output weights, but let the reservoir connec-
tivity matrix take completely random values, only bounded by the chosen
spectral radius. This obviously leaves a lot of room for improvement, as
not just any connectivity matrix will generate an optimal mappings of the
input space into the high-dimensional space of reservoir states. Although
there is empirical evidence of non-Hebbian forms of synaptic plasticity (A.
Alonso et al. 1990; H. K. Kato et al. 2009), most rules modifying the synap-
tic strength among neurons fall into the category of Hebbian learning. The
Hebbian rule, as originally proposed by Hebb (Hebb 1949), can be described
mathematically as a change in the synaptic strength between a pre-synaptic
and a post-synaptic neuron that is proportional to the product of their ac-
tivities. In the discrete-time language of ESNs, this would translate into:

wkj(t+ 1) = wkj(t) + ηxj(t)xk(t+ 1), (3.8)

where wkj is the weight element of W res connecting the “post-synaptic”
unit k with the “pre-synaptic” unit j . In the above equation, all weights
in the reservoir are updated in parallel at each discrete time step, with a
parameter η that sets the learning rate. An obvious flaw follows from Eq.3.8:
as the weights grow in the direction of the correlations between pre and post-
synaptic units, the connections get stronger following Hebb’s postulate, until
activity eventually spread uncontrollably throughout the network. To avoid
this undesired property, one possibility is to normalize the weights arriving

to each post-synaptic neuron k, so that
√∑

j w
2
kj(t) = 1, ∀t ∈ [0, T ]. One

can achieve this by rewriting the update rule in Eq.3.8 as:

wkj(t+ 1) =
wkj(t) + ηxk(t+ 1)xj(t)√∑N
i=1 (wki(t) + ηxk(t+ 1)xi(t))

2
. (3.9)
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Note, however, that Eq.3.9 is no longer local, meaning that a modification
in a given weight wkj also depends on the weights of unit k with all other
units. This makes the update not only computationally very expensive, but
also biologically less realistic. Nevertheless, if one assumes a small learning
rate η and close-to-linear activation functions in the absence of external
inputs, it is possible to derive a local approximation to Eq.3.9, known today
as Oja’s rule (Oja 1982):

wkj(t+ 1) = wkj(t) + ηxk(t+ 1) (xj(t) + xk(t+ 1)wkj(t)) . (3.10)

A complete derivation of this rule can be found for the sake of completeness
in Appendix B.II. Generally, all local Hebbian rules take the form wkj(t +
1) = wkj(t) + ∆wkj(t). However, it has been suggested that a change in
the sign of Hebbian plasticity rules (so that wkj(t+ 1) = wkj(t) − ∆wkj(t))
may be advantageous in making an effective use of the dynamical range of
cortical neurons (Barlow 1989), while also promoting decorrelation between
the activity induced by different inputs. For the purpose of this chapter we
will work with a form of this so-called anti-Hebbian learning known as the
anti-Oja rule, obtained simply by changing the sign of the weight update
in Eq. 3.10 (see Babinec et al. 2007; Yusoff et al. 2016 for applications of
this rule to ESNs).

Having defined a rule that adapts the internal weights between reservoir
units, we move now to non-synaptic forms of plasticity, which adjusts the
neurons’ internal excitability instead of the individual synapses. Based on
the idea that every single neuron tries to maximize its information transmis-
sion while minimizing its energy consumption, Jochen Triesch proposed a
mathematical learning rule that leads to maximum entropy distributions for
the neurons activity with certain fixed moments (Triesch 2005). Although
the original derivation of Triesch applied to Fermi activation functions and
exponential desired distributions, the work was soon extended in Schrauwen
et al. 2008 to account for neurons with hyperbolic tangent functions. In this
case, each neuron updates its state through the following expression, which
is an extension of Eq. 3.1:

xk(t) = tanh(akzk(t) + bk) (3.11)

where ak and bk are gain and bias terms for the post-synaptic neuron, and:

zk(t) = ε

Nu∑
i=1

winkiui(t) + ρ

Nx∑
j=1

wreskj xj(t− 1) (3.12)

is the total input arriving to unit k at time t . Online learning rules for
the gain, ak, and bias, bk, can then be derived from the minimization of

61



CHAPTER 3. LEARNING MACHINES LEARN TO LEARN

the Kullback-Leibler divergence with respect to a desired Gaussian output
distribution (Schrauwen et al. 2008), so that at each time step:

ak(t+ 1) = ak(t) + ∆ak(t), (3.13)

bk(t+ 1) = bk(t) + ∆bk(t), (3.14)

with

∆bk(t) = −η
(
− µ

σ2
+
xk(t)

σ2
(
2σ2 + 1 − x2k(t) + µxk(t)

))
, (3.15)

∆ak(t) =
η

ak(t)
+ ∆bk(t)zk(t), (3.16)

where η is the learning rate, while µ and σ2 are the mean and variance
of the targeted Gaussian distribution for the neurons activity, respectively.
The above update equations conform what is known today as the intrinsic
plasticity (IP) rule.

We remark that the above plasticity mechanisms, although often re-
garded as a form of unsupervised learning, are completely oblivious to the
task at hand. Their aim is that, by increasing the dynamical range of
the networks (anti-Hebbian synaptic rules) or maximizing the information
carried by the neurons output (intrinsic plasticity), the resulting network
will improve its ability to learn how to perform some task over the pre-
sented inputs. Thus, within the overall training process of the networks,
we like to refer to the stage mediated by input-induced plastic changes as a
learning-to-learn phase. In the following section we will test whether these
biologically-inspired rules can indeed improve the performance of ESNs on
a time-series prediction task.

3.4 Forecasting chaos

For our purposes, the task at hand will consist on a one-step-ahead
forecasting of a well-known chaotic timeseries: the Mackey-Glass dynamical
system (Mackey et al. 1977). The Mackey-Glass (MG) series is a classical
benchmarking dataset in time-series forecasting, generated from the time-
delay differential equation:

dx

dt
=

[
αx(t− τ)

1 + x(t− τ)β
− γx(t)

]
, (3.17)

where τ represents the delay and the parameters are set to α = 0.2, β = 10
and γ = 0.1, a common choice for this type of tasks (Yusoff et al. 2016; Ort́ın
et al. 2015). This dynamical system is known to exhibit a chaotic behavior
for time delays τ > 16.8, so we constructed a series of length T = 4000 as
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training set with τ = 17 (MG-17), often used as an example of a weakly
chaotic series. We refer the reader to our work in Morales et al. 2021a
for a comparison of the performance with a series showing stronger chaotic
behavior for τ = 30 (MG-30). More details regarding the integration of the
training and test series can be found in Appendix B.I.

When implementing any of the already introduced plasticity rules, we
ran the corresponding algorithms over the reservoir weights (anti-Oja rule),
or the units’ gain and bias (IP rule) using all T points of the training series
as input, and then passing over the full training set a number nep of times
(known as epochs in the ML jargon). At the end of this learning-to-learn
phase, the reservoir weights —as well as the gain and biases for the units in
the case of intrinsic plasticity— are kept fixed to their last configuration.

The evaluated prediction task consisted on the continuation of the se-
ries from the last input of the training set. Accordingly, the target se-
ries in the supervised training was defined as the one-step-ahead prediction
ytarget = [u2, u3, ..., uT+1] for an input u = [u1, u2, ..., uT ]. For the off-line
computation of the output weights W out, we kept all internal reservoir states
of the ESN and only after passing all the input training set we applied Eq.
3.4 (see Fig. 3.2 in the previous section).

Right after training of the output weights, the ESNs were asked to con-
tinue the series in generative mode for a number F of steps, beginning with
the last input of the training set, with F = 400 points. To quantify the
error between the points of the predicted and target test series, we used
two different magnitudes as described in Section 3.2: the root mean-square
error (RMSE) (Eq.3.6) and the furthest predicted point (FPP) (3.7), with
a tolerance value for significant deviation ϵ = 0.01, representing around 1%
of the maximum distance between any two points in the training series.

3.4.1 Hyperparameter selection

One of the biggest drawbacks of Echo State Networks is their high sen-
sitivity to hyper-parameters choice (see Lukoševičius 2012 for a detailed
review on their effects over the network performance). In this work, weights
in the reservoir, input and output layers are initialized randomly accord-
ing to a uniform distribution between -1 and 1. Sparseness in the reservoir
matrix is set to 90%, while input and output connections are initialized
as dense matrices. When incorporating plasticity rules, an extra tunable
hyper-parameter η is included, describing the learning rate in the update
rules. When IP is implemented, we find that best results are obtained when
using µ = 0 and σ = 0.5 as the mean and variance of the targeted distribu-
tion of the neuron states. For the sake of comparison between different mod-
els, we choose a common non-optimal —but generally well-performing— set
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Figure 3.4: Performance shows local maximum with the length of training. For
each plasticity rule, performance measures were computed across F = 400 predicted points
for a MG-17 chaotic time series forecasting task as a function of the number of training
episodes. At each epoch, averages were computed over 20 independent realizations of a
300 units ESN.

of hyper-parameters {N = 300, ρ = 0.95, ε = 1, β = 10−7, η = 10−6} for all
simulations.

3.4.2 Assessing forecasting performance

To analyze the effects of plasticity over the ESN performance on a one-
step-ahead prediction task over the MG-17 series , we compute the evolution
of the RMSE and FPP across epochs for both the synaptic (Fig. 3.4a) and
non-synaptic (Fig. 3.4b) plasticity rules considered. Notice how, in both
cases, the ESNs show optimal performance at a certain number of epochs
(as measured by a minimum of the RMSE, and maximum of the FPP),
followed by a decline in the network’s predictive capabilities as the training
continues.

The above behavior reveals that both synaptic and intrinsic plasticity
rules can increase the performance of ESNs during the first epochs of learn-
ing, but then a regime follows in which the networks lose their forecasting
abilities. In the following section we will delve into the “guts” of the reser-
voirs as they undergo plasticity changes, aiming at understanding the effects
of these rules over the dynamics of the network and, ultimately, the observed
shift in performance.

3.5 Plasticity rules shape the dynamical regime

3.5.1 Changes at the population level

We will first take a look at properties of the overall population dynamics
under the effects of plasticity. In particular, because we expect correlations
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among units to decay under the effect of anti-Hebbian rules, we will measure
the average equal-time cross-correlation among neurons as:

C =
1

ntrialsN(N − 1)

ntrials∑
n=1

N∑
i ̸=j

c
(n)
ij , (3.18)

where c
(n)
ij is the Pearson’s correlation coefficient between neurons i and j

at trial n:

c
(n)
ij =

∑T
t=1 (xi(t) − xi) (xj(t) − xk)√∑T

t=1 (xi(t) − xi)
2
√∑T

t=1 (xj(t) − xj)
2
. (3.19)

Moreover, since it was suggested that information transfer and storage in
ESNs are maximized at the edge between a stable and an unstable (chaotic)
dynamical regime (Boedecker et al. 2011), we will check whether plasticity
rules could be driving the network dynamics near such a phase transition
when optimal performance is observed, using the maximum Lyapunov ex-
ponent (MLE) as a control parameter.

Let’s assume that a given reservoir R ≡ {εW in, ρW res} is in a state
x(t0) of its phase space at an initial time step t0, and that a second, identical
reservoir R̃ = R is defined, but with an infinitesimally small perturbation
over the initial state such that x̃(t0) = x(t0) + δx . If, for a given set of
inputs u(t) the networks were poised in a dynamically-stable regime, one
would expect that ∃k > 0 : x(t′k) = x̃(t′k) ∀k′ > k, meaning that both
trajectories eventually converge over the phase space. On the other hand, if
the reservoirs show an unstable or chaotic dynamics, we would expect both
trajectories to further diverge in time. The MLE is a typical measure of
the system sensitivity to such perturbations (and, by extension, a way of
quantifying chaos), which is defined as:

MLE := lim
k→∞

1

k
log

(
γk
γ0

)
, (3.20)

where γ0 ≡ ∥x̃(t0)−x(t0)∥ is the initial distance between the perturbed and
unperturbed trajectories, and γk ≡ ∥x̃(tk) − x(tk)∥ is the distance between
the trajectories at time-step k (Boedecker et al. 2011; Sprott 2003). Thus,
a positive value of the MLE is characteristic of chaotic dynamics, whereas
the system is said to be stable to local perturbations provided MLE < 0.

Finally, for the case of synaptic plasticity, we will also track the changes
in the spectral radius ρ of the reservoir matrix due to the plastic updates,
since we saw in Section 3.1.2 the relevance of this parameter in determining
the presence of the echo-state property.
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Figure 3.5: Synaptic and intrinsic learning rules show different types of transi-
tion. Evolution of the average Pearson’s correlation coefficient between reservoir states
for the (a) anti-Oja, and (b) IP rules. (c) MLE for the anti-Oja rule and (d) MLE for
the IP rule. In (a), the evolution of the spectral radius of W res is also shown (blue).
For each epoch, error bars are computed as the standard deviation over 20 independent
realizations of an ESN.
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Fig. 3.5 shows how, for the initial stages of the plasticity learning phase,
both the anti-Oja and IP rules induce decorrelations inside the reservoir,
as reflected by a decrease on the average Pearson’s correlation coefficient.
Nevertheless, while this decrease happens in a continuous, smooth manner
for the intrinsic plasticity, the anti-Oja rule shows a sharp transition from
a high-correlated to low-correlated state happening at a critical number of
epochs nAOcrit ∼ 20, which is concomitant with a steep increase in the spectral
radius. Interestingly, while the average correlation goes to zero in both rules,
the average absolute correlation between unit pairs increases past nAOcrit in the
synaptic plasticity rule, coinciding with the drop in forecasting performance
observed in Fig. 3.4. We will get a better understanding of this behavior
when looking at the single-unit activity in the next section, but for now,
let us stress that this difference in the nature of the transition for the anti-
Oja and IP rules can be further highlighted by measures of the maximum
Lyapunov exponent (MLE). In the synaptic case, the MLE increases towards
zero during the first stage of the learning and then, coinciding with the sharp
drop in correlations, decreases again at a much faster rate. However, the fact
that the MLE remains negative across all epochs of the learning, shows that
the transition is not of the order-to-chaos type. On the contrary, excitability
changes due to intrinsic plasticity can drive the network from an originally
stable regime to a chaotic regime with MLE > 0 at a critical number of
epochs nIPcrit ∼ 100 , effectively inducing the loss of the echo-state property
and, consequently, the loss of any forecasting capability of the network (Fig.
3.4, right). Notably, the results presented here for the intrinsic plasticity
rule seem to agree with the observations in (Boedecker et al. 2011), where it
was suggested that information transfer and storage in ESNs are maximized
at the edge between a stable and a chaotic dynamical regime. In our case,
however, two different behaviors on the error performance emerge across
IP training epochs (Fig. 3.4). We see a first deterioration in performance
happening after ∼ 50 epochs, when the reservoir is approaching the the
edge of instability but is still on the stable regime (MLE < 0). Within
this dynamical regime the network is still able to predict part of the test
series, and the error remains bounded. Then, a second steep increase of the
RMSE takes place when the network crosses the boundary MLE = 0. At
this point, the outputs generated by the network can span values outside
of the support of the original input, which can effectively translate into a
diverging error.

Since a poor performance is usually associated to the loss of the echo-
state property, we will now take a look at the evolution of the “memory”
of the networks at different stages of the training. The task of memory
capacity (MC), as introduced in Herbert Jaeger 2001a, is based on the net-
work’s ability to retrieve past information from the reservoir using the linear
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combinations of reservoir unit activations. In particular, given T points of
a single-variable random training series, u(t − d), drawn from a uniform
probability distribution in the interval [−1, 1], the goal is to generate L-
dimensional outputs y(t), such that, at each time t, the element d of the
output vector is a reconstruction, ũ(t − d), of the input d steps before the
current time:

yd(t) =
N∑
k=1

woutd,kxk(t) = ũ(t− d) (3.21)

For that, each of the L output units is independently trained to approximate
past inputs with a different value of d. To assess the ability of each ESN
model in restoring previous inputs fed into the network, we compute the
(short-term) MC as introduced by Jaeger in Herbert Jaeger 2001a:

MC =
∞∑
d=1

MCd =
∞∑
d=1

(
⟨(u(t− d) − u)(yd(t) − yd)⟩

σu · σyd

)2

(3.22)

where MCd is just the squared Pearson’s correlation coefficient between
the actual input d steps before, u(t − d), and its reconstruction at time t:
yd(t) = ũ(t − d). Thus, a value MCd ∼ 1 typically means that the system
is able to accurately reconstruct the input fed to the network d steps ago.
In consequence, the sum of all MCd can be understood as an estimation
of the number of past inputs the ESN is able to recall. Although the sum
runs to infinity in the original definition —accounting for the complete past
of the input— in practice it was shown in (Herbert Jaeger 2001a) that a
theoretical limit for the memory capacity on a reservoir of N neurons is
given by MCmax ≈ N − 1, so we can set an upper threshold on the sum
given by dmax = N .

Fig. 3.6 (left) shows for the memory curves for the original (i.e., non-
plastic) ESN and for two networks trained for the optimal amount of epochs
using the anti-Oja and IP rules, respectively. We notice how models with
implemented plasticity outperform the original ESN, which shows a faster
decaying memory. These results are in agreement with the average values
presented in (Boedecker et al. 2011), where the maximum memory was
observed at the edge of stability for a random recurrent neural network.
Moreover, we can see how during the plastic learning the average memory
capacity increases up to a certain critical number of epochs for both types
of plasticity. Nevertheless, while in the case of the anti-Oja rule the ability
of the network to retrieve past inputs drops drastically around the critical
number of epochs nAOcrit ∼ 20, for the IP rule the memory capacity remains
fairly high even after plasticity has driven the reservoir into the chaotic
regime.
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Figure 3.6: Memory capacity can be enhanced through plastic learning. Left:
memory curves, MCd, as a function of the delay d for an ESN with no plastic training
(black), and the same network after been optimally trained with the anti-Oja rule (red)
and the IP rule (blue). Right: evolution of the average memory capacity of the network
with the number of learning epochs (normalized, for visualization purposes, by the max-
imum number of epochs in each rule). Errors in all cases are computed as the standard
deviation over 20 independent realizations of the networks.

3.5.2 Changes at the single-unit level

So far, we have focused on understanding the effects of plasticity at the
network level, but nothing has been said about the way each individual unit
“sees” or “reacts” to the input after implementation of the plastic rules. To
shed some light into this question, we define the effective input ueffn (t) of a
unit n at time t as the presynaptic input arriving at unit n once it has been
filtered through the input mask, ueffn (t) =

∑Nu
j=1w

input
nj · uj(t). In this way,

Eq. 3.1 for the state update of a single unit can be rewritten as:

xn(t+ 1) = tanh

an
εueffn (t) + ρ

∑
j

wresnj xj(t)

+ bn

 , (3.23)

where we have also included the possibility of having gain, an, and bias,
bn, terms for the case in which there is learning through intrinsic plasticity.
In Fig. 3.7a we plot the response of two different units to this effective
input before (black dots) and after the implementation of the anti-Oja and
IP rules for an optimal (close-to-critical) number of epochs in each case
(red and blue dots, respectively). It can be clearly seen that plasticity has
the effect of widening the activity range of the units, specially on those
areas —as highlighted in yellow— in which the same point may lead to very
different continuations of the series depending on its past history, as it can
be seen from the plot in Fig. 3.7b, showing ∼ 500 points of the effective
input ueffn (t) arriving to one of such neurons. In the case of the IP rule, a
further displacement of their activity towards the center of the activation
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Figure 3.7: Plasticity leads to an expansion in the units phase space. Activity of
2 different neurons as a function of the effective input in a non-plastic ESN (black) and in
the same reservoir after training it with the anti-Oja rule (red) and the IP rule (blue). On
the right side we zoom in one of the neurons, plotting also the evolution of the effective
input over a section of the training. We highlight in yellow the range of inputs for which
the activity broadens more notably with respect to the non-plastic case, coinciding with
the most variable part of the series

function was observed, which should come as no surprise since we chose a
zero-mean Gaussian as our target distribution.

As an end to the results presented in this chapter, we applied the same
neuron-level framework to see if we can understand the effects of an over-
trained plasticity. We now applied the anti-Oja and IP rules for a total of
nAO = 25 and nIP = 175 epochs, respectively. From the resulting plot of
the activity as a function of the effective input, as shown in Fig. 3.7b, two
different paths leading to the deterioration of performance can be identified.
On the one hand, overtraining with the IP rule drives the network states to
a seemingly blurred phase space representation at each unit of the reservoir,
in which every effective input value can lead to very different responses of
the same unit, with all units behaving similarly. On the other hand, an
excess of synaptic learning produces the split of the original phase space
representation into two disjoint regions. We observed that the instability
in this case is associated with a self-sustained periodic dynamics of the
reservoir states, leading to consecutive jumps from one region of the phase
space to the other.

3.5.3 Conclusions and perspectives

In this chapter, we showed how numerical implementation of unsuper-
vised synaptic and non-synaptic plasticity rules can improve the perfor-
mance of Echo State Networks in a chaotic-time-series forecasting task.
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Both anti-Oja and intrinsic plasticity (IP) rules induced decorrelations in-
side the reservoir states, effectively expanding the regions spanned by in-
dividual units in their activity phase space. In Morales et al. 2021a, the
fact that mechanisms apparently so disparate exhibit similar effects at the
neuron and network level motivated the idea of synergistic learning involv-
ing both, synaptic and nonsynaptic plasticity, a phenomenon that has been
extensively backed up also in biological systems (Hanse 2008; Mozzachiodi
et al. 2010).

At the network level, we showed for the anti-Oja rule how the sud-
den increase in the reservoir weight matrix spectral radius co-occurred with
a sharp drop on the states pair-wise correlations (Fig. 3.5). More con-
cretely, we observed that the optimal number of epochs happened just be-
fore the transition to a periodic self-sustained dynamics inside the reservoir,
Similarly, continuous application of the IP rule also tended to decorrelate
the states of the neurons within the reservoir, but the transition to a low-
performance regime was of different nature: in this case the reservoir enters
into an unstable regime, characterized by a positive value of the maximum
Lyapunov exponent (MLE). This high-to-low performance transition with
the number of epochs was also evinced by looking at the ability of the
network to retrieve past inputs on a memory capacity task, showing that
both types of plasticity rules can increase the memory of the reservoir up
to a critical number of epochs after which the network looses its echo-state
property.

Interesting results emerged also by looking at the single-unit level before
and after the implementation of plasticity rules. In particular, we saw how
plasticity rules expanded each neuron activity space, adapting to the prop-
erties of the input and thus enhancing the dynamical range of the whole
network. We used this framework to further analyze the differences in the
regime of low performance for the anti-Oja and IP rules. In the synaptic
case, once we reach the critical number of plasticity training epochs the
phase space region occupied by the activity of each single neuron splits into
two disjoint regions, the state jumping from one region to the other at con-
secutive time steps such that the overall dynamics falls into a stable fixed
point. In the IP rule, on the other hand, we found that decorrelation of the
states and expansion of their phase space continues progressively up to a
point in which units loose their selectivity to particular parts of the input,
becoming instead reactive to all inputs in a manner highly-dependent of the
reservoir history.

Our findings also rise interesting questions that will hopefully stimulate
future works. The computational paradigm of reservoir computing has been
shown to be compatible with the implementation constraints of hardware
systems (Van der Sande et al. 2017; Tanaka et al. 2019; Cramer et al. 2020).
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The finding that a physical substrate with non-optimized conditions can be
used for computation has been exploited in the context of electronic and
photonic implementations of reservoir computing (Appeltant et al. 2011;
Brunner et al. 2013). Thus, the results presented in this chapter anticipate a
potential advantage of considering such plasticity rules in physical systems, a
thrilling line of research that has just emerged with the first implementation
of plasticity within a neuromorphic chip(Cramer et al. 2020).
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Chapter4

A representation of reality

“Reality was one step out of line, a
cardigan with the buttons done up
wrong.”

Haruki Murakami, Sputnik Sweetheart

“Para llorar, dirija la imaginación hacia
usted mismo, y si esto le resulta
imposible por haber contráıdo el hábito
de creer en el mundo exterior, piense en
un pato cubierto de hormigas o en esos
golfos del estrecho de Magallanes en los
que no entra nadie, nunca.”

Julio Cortázar, Historias de
Cronopios y Famas



CHAPTER 4. A REPRESENTATION OF REALITY

4.1 Introduction: the problem of perception

For centuries, the epistemological problem of perception has been a fer-
tile ground that attracted many of the greatest philosophers throughout
history, giving rise to theories about whether an objective reality exists out-
side of our minds, and if so, whether we can rely upon our senses to attain
an objective observation of it. Skeptics, inspired by Descartes arguments,
maintain that, since our only access to the external world is mediated by
potentially misleading perceptual appearances, so the “veil of perception”
refrains us from any possible knowledge of an external reality. Paraphras-
ing the words of David Hume: nothing is ever directly present to the mind
in perception except perceptual appearances (Lyons 2023). Following this
perspective, there is no reason to believe (nor disbelieve) in the existence
of an objective external reality. Even if such a reality existed, the “veil of
perception” would keep us from having any knowledge of it.

As a response to the skeptical argument, idealists like Kant would make
a distinction between the phenomenal objects of perception —which are
collections of appearances— and noumenal objects —which are things in
themselves, with an existence that is independent of human perception.
Thus, idealists apply Descartes’ skepticism of the noumenal world, which is
unknowable to us, but they can close the epistemological gap arguing that
the observable world is, in fact, made out of the perceptual constructs in
our minds, for which we can know something. On the opposite side of the
spectrum sit realists, for whom the perceptual constructs are, at least to
some extent, representations of an existing physical reality. Furthermore,
realists would argue that our sensory systems have evolved to capture mean-
ingful aspects of the world, providing us with accurate information about
it. Regardless of whether they assume that conscious sensory experiences
have an almost 1:1 correspondence with external reality (naive or direct re-
alism), or they deny direct-world involvement in perception —with the later
taking place through the lens of a conceptual framework (representational
or indirect realism)— all realists would agree on the fact that the real world
consists of noumenal objects, with a physical existence (Lyons 2023). As we
will see, the ideas presented in the following chapter lie at the basis of what
I like to denote as a two-fold realism, where experience with the external,
noumenal world can be seen as taking place across two different phases.

The first part of experience, which I will call the representational phase,
involves the direct translation of incoming stimuli into patterns of spiking
activity across thousands or millions of neurons within the sensory regions.
Given the degree of complexity of neural networks, it is within reason to
assume that no two sensory inputs can elicit the exact same response in
the brain (in fact, as we will see in Chapter 5, one fixed stimulus can evoke

74



4.1. INTRODUCTION: THE PROBLEM OF PERCEPTION

very different responses across time). Therefore, this first leg of the journey
can be understood as a softened version of naive realism, in which sensory
representations (but not yet perceptions) have an almost 1:1 correspondence
with external reality.

The second part, denoted in what follows as the perceptual phase, takes
place as higher cortical areas read-out the information in sensory regions,
evoking what we understand as conscious experiences of the external world.
These are indeed perceptual constructs of our minds in response to a phys-
ical reality (indirect realism), and —as any skeptical would claim— they
cannot be proven to convey faithful information about it.

Nevertheless, I will argue that actual knowledge about the external world
can be extracted from the physical responses of neurons during this repre-
sentational phase of sensory experience. In particular, we will transform
the epistemological problem of perception (that is, the problem of how ac-
tual knowledge from the world could be acquired from the arising mental
experiences), into the ontological problem of representation: how can the
external reality be encoded into the language of billions of firing neurons?

To get some more intuition into the concept of neural representations,
let us imagine we have recorded the activity of a set of N neurons that we
think are involved in the processing of a certain type of input (for instance,
pyramidal neurons in the olfactory cortex responding to the presence of
odor stimuli). One can then interpret the average response or firing rate of
every neuron to one of such stimuli as a point in the N -dimensional phase
space spanning all possible population states, which we will refer to as the
neural space. Following this line of reasoning, a set of T stimuli would then
be mapped into T points of the neural space (see Fig. 4.1). However, one
would expect that correlations among neurons generate some redundancy
in the encoding; i.e., there are many neurons that share the same type of
response or tuning to a set of stimuli. Thus, population responses are not
expected to be randomly distributed across the whole N -dimensional space,
but to occupy a space of dimension D ≪ N , which we will refer to as the
representation manifold (Chung et al. 2021; Ganguli et al. 2012). In more
mathematical terms, one can think of a representation as an isomorphism
f : U −→ X between the space of all possible inputs U to the space of all
possible neural population states X ∈ RN .

In this chapter we will be looking at the mathematical properties that
characterize the “optimality” of such internal representation, eventually un-
veiling the existence of a fascinating relation between the geometry of these
neural manifolds and the dynamical regime in which the underlying neural
network operates. To derive these results we will resort to the Echo State
Network (ESN) (Herbert Jaeger 2001c; Lukoševičius 2012) framework al-
ready introduced in Chapter 3, drawing a parallel with the experimental
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Figure 4.1: A new arrow into the problem of perception

evidence found by Stringer et al. for the representation of visual stimuli in
mouse V1 cortex (Stringer et al. 2019a). The next section presents a brief
overview on this seminal work, which will provide us with a link between
the geometrical properties of neural manifolds and the cooperative effects
emerging from neuronal dynamics. At the same time, we will also set up
the necessary tools to tackle the representation problem from the lens of
Reservoir Computing.

4.2 The tools of the trade

4.2.1 A smooth representation of external stimuli

Going back to the manifold picture as depicted in Fig.4.1, one can intu-
itively hypothesize that the robustness of the response to a particular input
will be likely conditioned by the ”smoothness” of the neural manifold: if
we want similar inputs to be encoded by similar patterns of activity, then
small perturbations du in the input space should account for small changes
df(u) in the representational space. Intuitively, this amounts to f being
continuous and differentiable on the set of all possible inputs, or, in other
words, the representation manifolds should be continuous and differentiable
(henceforth ”smooth”). Indeed, within the field of ML, it has been shown
that deep neural networks trained to classify images are more susceptible
to adversarial attacks (subtly designed changes in some of the images pixels
aiming at hindering the network’s ability to classify images) when their in-
ternal representations of the input do not live in a smooth manifold (Madry
et al. 2019; Nassar et al. 2020).

Remarkably, the authors in Stringer et al. 2019a presented a mathemati-
cal proof that conditioned the smoothness of such manifolds to the spectrum
of the covariance matrix of neuronal responses to a set of stimulus. More
specifically, let X ∈ RN×M be the matrix containing the average response
(firing rate) of N recorded neurons to a set of M stimuli (see Fig.4.2), corre-
sponding to M points in the neural space. Then, in the limit of N,M → ∞
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, it is possible to derive a necessary condition for the smoothness of the
manifold spanned by the M population responses: the eigenvalues of the
signal covariance matrix CX , when ranked from the largest to the smallest,
should decay with their rank according to a power law (i.e., λn ∼ n−µ )
with an exponent

µ ≥ 1 + 2/d, (4.1)

where d represents the embedding dimension of the inputs, and can be
understood in the language of Principal Component Analysis (PCA) as the
number of independent principal components needed to capture most of
the variance of the stimuli. In particular, the representation manifold is
continuous (but not differentiable) if 1 + 2/d > µ ≥ 1, and for µ < 1 it
cannot be continuous either. Notice that µ = 1 serves as a lower bound for
the eigenspectrum decay-exponent for complex, high-dimensional inputs,
such as natural images. Details of this proof are not presented here, but
the interested reader is referred to Stringer et al. 2019a for an in-depth
explanation of this smoothness-to-spectrum relation and its implications.

Remarkably, the above theoretical predictions were validated in experi-
mental recordings of over 10000 individual neurons in the mouse visual cor-
tex while the animals were exposed to a large sequence of images (Stringer
et al. 2019a). The authors showed that the brain is capable of generating
internal representations which are optimal from an information-encoding
point of view: they are as high-dimensional as possible (i.e., correlations
show a slow-decaying spectrum, meaning that there are many relevant prin-
cipal components capturing the signal variance of the representations), while
respecting the aforementioned boundary for continuity and differentiability.
In particular, for the encoding of natural images, this translates into mea-
sured exponents for the covariance eigenvalue spectrum µ ∼ 1 (see Fig.4.2),
but the same phenomenology (with µ ∼ 1 + 2/d) was observed when the
original inputs were projected into lower-dimensional spaces before being
presented to the mice.

We remark once again that the condition expressed by Eq. 4.1 is a
property of the input-related or signal variance. However, when one mea-
sures the empirical covariance matrix ĈX = 1

M−1XX
T across a set of M

stimuli, the variance associated to each eigenvector (i.e., each principal com-
ponent) will be a mixture of input-related and noise variance. Thus, before
delving any further into the properties of neural manifolds, we first need a
method that allows us to separate the directions of input-related variability
—which carry information about the represented external stimuli— from
the directions of trial-to-trial variability (which, for practical purposes, we
will identify here with noise, although it could emerge from the encoding
of other unknown latent signals). Introducing such a method, known as
cross-validated Principal Component Analysis (cvPCA), will be the scope
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Figure 4.2: Stringer et al.’s experimental setup.A set of M = 2800 natural images
where shown to mice, while recording the activity of over 10,000 neurons in the V1 cortex
of the animals. Responses to individual images were averaged over a time-window of 0.5s.
The covariance matrix was then computed and filtered through a cross-validated Principal
Component Analysis (cvPCA) to extract the signal variance, which showed a powerlaw
decay with a exponent µ ∼ 1

of next section.

4.2.2 Disentangling input-related and background activity

When trying to make sense of high-dimensional data, as in the case of
recordings of thousands of neurons, a common and very practical tool to
reduce the dimensionality of the problem and find directions of interest is
Principal Component Analysis (PCA). Mathematically speaking, given a
matrix of observations X ∈ RN×M , where N is the number of variables and
M the number of samples or observations, PCA seeks to find a transforma-
tion or change of basis, P , such that Y = PX is a better representation of
the data, meaning that: i) the redundancy between the variables (i.e., the
covariance) is minimized, and ii) the signal-to-noise ratio is maximized, this
is, P projects the original data into the directions of maximal variance. PCA
finds a particularly elegant solution: in the new basis, the covariance matrix
CY must be diagonal, so the projector P is just the matrix of eigenvectors
of CX arranged in columns (Shlens 2014).

As mentioned in the previous section, if PCA was applied directly over
the experimental recordings for the mouse V1 cortex in Stringer et al. 2019a,
one would indeed find the directions of maximal variability of the neural
responses, but nothing could be said about the origin of this overall variance.
In fact, it is estimated that half of the variance of the visual-cortex activity
is unrelated to stimulus-encoding activity (Stringer et al. 2019b). How could
we then tell apart the variance steaming from the stimulus encoding (signal
variance), from the intrinsic or trial-to-trial variability (noise variance)?

Stringer et al.. showed that the stimulus-related variance can indeed be
extracted from empirical data by measuring the amount of shared variance
between the neural responses to a repeated presentation of the same set of
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stimuli (Stringer et al. 2019a). We leave the mathematical details of this
method, known as cross-validated Principal Component Analysis (cvPCA),
to Appendix C.

Moreover, since cvPCA provides us with not only the eigenvalues (vari-
ance), but also the associated eigenvectors, we showed that the method
can then be easily extended to extract also the noise variance, assuming
that signal and noise components span orthogonal sub-spaces within the N -
dimensional space neural space (Morales et al. 2023). One can then project
the original activity into an input-related subspace Ψ, independent of the
trial, and an orthogonal, trial-dependent subspace Σk, such that on trial k:

Xk = Ψ + Σk. (4.2)

Now that we know how to disentangle the input-related activity from the
background fluctuations, we can begin to investigate how the dynamical
properties of the neural network shape the geometry of the internal neural
representations. To do so, we first introduce a suitable algorithm that can
train the ESNs on an image-classification task.

4.2.3 Training protocol for an image-classification task

In order to adapt the ESN architecture —usually employed in time-
series analyses— for an image classification task, we converted each input
black and white image (consisting of L1 × L2 pixels with a value in the
[0, 1] interval, representing a normalized gray-scale) into a multivariate time
series where each image columns is a vector of L1 elements or features that
“evolve” along T = L2 discrete “time” steps. One can then define a standard
training protocol (Bianchi et al. 2021) in which, as illustrated in Fig.4.3, at
each time t ∈ [0, T ], vectors u(t) ∈ [0, 1]L1 corresponding to columns of the
image are fed as inputs to the ESN.

Using a supervised learning scheme, the goal of the ESN is to transform
(map) the internal representations of the input into an output label y ∈ NF
that correctly classifies each image in the test set as belonging to one of the
F existing categories or classes. This label consists of a vector in which ev-
ery element is zero except for a value of one at the position corresponding to
the assigned class (i.e., ”one-hot-encoded” in the machine learning jargon).
Several readout methods have been proposed in the literature to transform
the information contained in the reservoir dynamics into the expected tar-
get output ytarget ∈ NF, ranging from linear regressions methods over the
reservoir states (R. Felix Reinhart et al. 2010; René Felix Reinhart et al.
2011), to the use of ”support vector machines” or ”multilayer perceptrons
as decoders (Babinec et al. 2007). Here, as with the timeseries prediction
task, we will resort to a simple linear regression, but instead of using the
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Figure 4.3: Training process of an ESN for an image classification task. Images
are converted to multivariate time series and then fed into the reservoir. For each pro-
cessed image a set of parameters θx is generated, which characterizes the high-dimensional
state of the reservoir, i.e. the “reservoir model space”. Those parameters are then fed
into the readout module, that linearly transforms the information in the reservoir model
space into an output label. Finally, output weights Wout and biases bout are generated by
minimizing the error between the predicted and target labels. Red arrows indicate steps
in which a Ridge regression is performed.
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4.3. A THREE-SIDED COIN: SMOOTH REPRESENTATIONS AND OPTIMAL
PERFORMANCE MEET AT CRITICALITY

activities of the units inside the reservoir, the readout will be carried over
the reservoir model space, a method that has been recently proposed for the
classification of multivariate-time series in Bianchi et al. 2021:

y = Woutθx + bout, (4.3)

where Wout ∈ RF×N(N+1) and bout ∈ RF , defined as the output weights
and biases, are determined through a ridge regression that minimizes the
error between the produced and target label for all the presented images in
the training set. In the above expression, θx = [vec(Wx);bx] is the reservoir
model space, a set of parameters encoding the reservoir dynamical state for
a given input (image), obtained from a linear regression to predict the next
network state from the past one at discrete time steps:

x(t+ 1) = Wxx(t) + bx. (4.4)

In the following section, we will follow this protocol to mimic the exper-
imental setup proposed in Stringer et al. 2019a using an ESN trained in an
image classification task. Once trained, our ESN will be able to decode the
identity of the presented images from the internal representations of such
inputs in the reservoir.

4.3 A three-sided coin: smooth representations
and optimal performance meet at criticality

Since our goal is to mimic in our ML framework the experimental obser-
vations of Stringer et al., there are certain questions that one can naturally
ask even before delving into the simulations:

• Are ESNs able to generate “optimal” internal representations of d-
dimensional inputs, which are as high-dimensional as possible while
respecting the smoothness boundary given by µ > 1 + 2/d?

• If so, what characterizes the dynamical regime in which these optimal
representations emerge?

• Does the dimensionality and smoothness of the internal representa-
tions affects the network’s ability to classify the input images?

In order to answer the first two questions, we first need a way of tuning
the dynamics of the ESNs. Recall from Chapter 3 that the evolution of the
activity for the reservoir units follow a discrete-time equation that can be
written as:

x(t) = tanh(εW inu(t) + ρW resx(t− 1)), (4.5)
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where the values of W in are randomly drawn from a uniform distribution in
the interval [−1, 1], and W res is defined as a sparse matrix that has been re-
scaled so that it has unitary maximum eigenvalue (i.e., W res ≡ (1/ρ̃)W̃ res,
where W̃ res is a sparse matrix with maximum eigenvalue ρ̃ and elements
drawn from a uniform distribution).

Thus, we will seek to analyze the reservoir input internal representations
in terms of the trade-off between the two hyperparameters that drastically
determines its dynamical regime and the existence of the echo state prop-
erty: the spectral radius ρ, which controls the stability inside the reservoir
when no input is fed into the network, and the scaling factor ε, which
can turn an initially expanding mapping into a contracting dynamics, as
stronger inputs tend to push the activities of the reservoir units towards the
tails of the non-linearity (see Section 3.1.2). The number of units in the
reservoir will be fixed to N = 2000 and the density of the reservoir weight-
matrix elements (i.e., the percentage of non-zero connections) to 10%.

Having set the two knobs that tune the dynamical regime of the network,
one just needs to define a good dial that serves as a control parameter to
quantify how far is the network dynamics into the stable or unstable regimes
(see Section 3.1.2). For this we will use the maximum Lyapunov exponent
(MLE), as already introduced in Section 3.5, which serves as a measure of
the system sensitivity to perturbations. We recall that negative values of the
MLE characterize a system that is stable under local perturbations, whereas
positive ones are associated to chaotic regimes in autonomous systems1

Following the same methodology as in Stringer et al. 2019a, the ESN
was first presented with a large set of high-dimensional, natural images,
and the activity of the internal units in the reservoir was stored for each
step of the training. Then, PCA was performed directly over the full set of
neuron activities X ∈ RN×(T×M), where T = 90 is the number of pixels in
the horizontal dimension of the images and M = 2800 is the total number
of images. In this way, we obtained the variance along each principal com-
ponent or eigenvector of the covariance matrix, which serves as a basis for
the activity inside the reservoir. Notice that, because the dynamics of the
system (as described by Eq.4.5) is fully deterministic, all the variance in the
reservoir states stems from input-related activity, and no cvPCA analysis is
needed.

The surface in Fig.4.4 shows the exponent of the covariance matrix eigen-
spectrum as a function of the hyperparameters (ρ, ε) for an ESN presented
with the same set of natural images as the ones used in Stringer et al. 2019a.
As we can see, for a fixed value of the input scaling ε the spectrum of covari-

1Although this is obviously not the case in an ESN, for which the dynamics is input-
driven, we will see that this quantity can still be informative as a control parameter for
the underlying phase transition.
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Figure 4.4: Smooth, high-dimensional internal representations arise near the
edge-of-instability. Exponent for the power-law decay of the spectrum of the activity
covariance matrix as a function of the spectral radius (ρ) and input scaling factor (ε) of
the reservoir, plotted together with the maximum Lyapunov exponent (MLE) color-coded
within the surface. The insets correspond to the activity covariance matrix eigenspectrum
measured in three different points of the parameter space, where the variance in the n-th
dimension scales as a power-law n−µ of the rank. The purple plane marks the boundary
µ = 1 for smooth representations of high-dimensional inputs.

ances decay slower as we increase the spectral radius ρ. In other words, this
means that the encoded representations become more high-dimensional as
we increase the relative strength of the recurrent interactions with respect to
the external input. Even more remarkably, notice how the boundary expo-
nent for “smooth” high-dimensional input representations, µ ≈ 1, coincides
almost exactly with the transition between the stable an unstable regimes
(MLE = 0, color-coded). This means that the system is able to gener-
ate “optimal” representations of the input images, with properties akin to
those observed in the visual cortex of mice, only when its dynamical regime
is close to a critical point.

Although this emerging link between smooth, optimal neural represen-
tations of natural images and distance to criticality is quite a remarkable
finding on itself, can we push it a bit further and test the validity of Eq.4.1
for inputs with a different embedding dimension d?

4.3.1 Matching visual cortex and ESNs

We will now be presenting the exact same sets of 8-dimensional and
4-dimensional images (constructed using a reduced-rank regression model
from the natural ones, see (Stringer et al. 2019a) for more details) that were
presented to the mice in Stringer et al.’s paper. For each type of input,
we tuned the network so it operated right before the onset of the unstable
regime, i.e., for values in the parameter space (ρ, ε) for which the MLE was
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near zero but still negative.
Fig.4.5 shows the rank-ordered covariance eigenvalues of the reservoir

states, together with the best power-law fit exponents, for natural and low-
dimensional inputs. For the sake of comparison, we also reproduced in
yellow the eigenvalue rank-ordered distributions obtained from the experi-
mental data on mouse visual cortex (Stringer et al. 2019a). Remarkably, we
found in all cases that the exponents observed in the mouse visual-cortex
activity could be well reproduced provided the reservoir dynamics was tuned
close to the edge of instability. This finding suggests that one can set the
network parameters in such a way that the neural activity manifold in which
the input is represented is almost as high-dimensional as possible without
loosing its ”smoothness”, and that such optimal solution is found near a
critical point.

At this point, it is probably pertinent to dig a bit deeper on the similari-
ties and differences between the results presented in Stringer et al. 2019a for
real, V1-cortex neurons in the mouse, and the power-law exponents obtained
through our reservoir computing model.

1. First of all, as in the case of real neurons, the observed correlations
between the internal units are not just a byproduct emerging from
scale-free features of natural images (see second column in Fig.4.5). In
particular, one can see that the power-law decay of the eigenspectrum
persists even in response to low-dimensional inputs whose embedding
vector space can be spanned with just a few principal components (i.e.
without a power-law decaying intrinsic spectrum).

2. In our model, images are processed sequentially in time along their
horizontal dimension, so that for each image one can measure the ac-
tivity of the N = 2000 internal units over T = 90 time steps. In
contrast, activity of V1 neurons in (Stringer et al. 2019a) were aver-
aged across the time span of each stimulus presentations (0.5 seconds).

3. The variance observed by Stringer et al. is not directly measured
over the raw activity of the neurons, but filtered to extract only the
input-related variance using the cvPCA method explained in Section
4.2.2. However, since our model is completely deterministic for a
given initialization of an ESN, the stimulus-related variance computed
through cvPCA trivially matches that of a standard PCA.

At the light of this last point, one could naturally wonder what would
happen if we add a small additive noise term inside the activation function
in Eq.4.5, so that the dynamics now becomes stochastic:

x(t) = tanh(εW inu(t) + ρW resx(t− 1) + ξ(t)). (4.6)
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Figure 4.5: ESNs near the edge-of-instability generate representations with the
same eigenvalue distributions observed in real neurons. From left to right: one
sample from the M = 2800 images in the training set; covariance eigenspectrum of the
images pixel intensities; covariance eigenspectrum of the internal states of an ESN (blue
line) and real, V1 mouse neurons (yellow line, plotted after Stringer et al. 2019a applying
cvPCA) when subject to images of dimensionality d ; same analysis, but now zero-mean
white noise of amplitude ϵ = 0.4 is added to the neuron dynamics (blue line), and no
cvPCA is performed over the experimental recordings (yellow line); same analysis as in
the previous panel, but now noise has been sustracted using cvPCA in both, simulations
and experiments. From top to bottom: results for natural, high-dimensional images; the
same images projected onto 8 dimensions; the same images projected onto 4 dimensions.
To obtain the ESNs eigenspectra, parameters were chosen so that the networks operated
near the edge-of-instability, with MLE ∼ −5 · 10−3.

Are the power-law exponents robust to the introduction of such a noise?

To answer this question, one can present this modified version of the ESN
with two repeats of the same input training set, collect at each time step
the internal states of the noisy reservoir, and then apply a cvPCA analysis
as proposed in Stringer et al. 2019a to filter for the signal variance. Once
again, just as in the case of real V1 neurons, if we measure the covariance
matrix over the raw, noisy activity, we find small exponents values that are
below the critical threshold for continuity and differentiability of the neural
manifold (Fig. 4.5, fourth column). Nevertheless, once a cvPCA has been
performed over the internal states to filter out the noise correlations, we
recover the expected exponents and their dependency with the dimension
of the input (Fig. 4.5, fifth column).

We will further comment on the possible implications of this result in
the Conclusions section at the end of the chapter, but for now, let us wrap
up our findings tackling what we believe is a fundamental question from the
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perspective of Machine Learning: does working at the edge of instability,
with its concomitant high-dimensional —yet smooth— neural representa-
tions, provide any functional advantage regarding the ability of the network
to solve a given task?

4.3.2 Solving an image classification task

To assess the performance of the ESNs, we relied on a classification task
over the MNIST dataset —a common benchmark dataset consisting in 28x28
pixel pictures of hand-written digits (Deng 2012)—, following the protocol
already introduced in Section 4.2.3. In particular, we trained the readout of
the networks over one-third of the full MNIST training set (20,000 images),
and then evaluated the classification error of the ESNs over the full test set
(10,000 images).

Fig. 4.6 shows the percentage of digits that were correctly classified
during the test as a function of the reservoir spectral radius for a fixed input
scaling ε = 0.6, together with the MLE characterizing the dynamical regime
of the network. The results highlight the fact that optimal performance
(∼ 2.2 % error rate) is found just below the onset of chaos, when λ ≲ 0.
Most notably, the plot also evinces that the decay in performance is not only
preceded by a positive MLE, but coincides too with exponents µ for the fit
of the covariance matrix eigenpectrum that are below the limiting value
µc ≈ 1, indicating a loss of continuity and differentiability of the neural
representation manifold for high-dimensional inputs.

One could arguably say that using a reservoir computing approach,
where images are processed in a time-sequential manner, is hardly com-
parable to the way in which visual stimuli are processed in the mouse V1
cortex. Nevertheless, we remark that Eq.4.1 is a property of the correlations
within the neurons when subject to stimuli with an embedding dimension
d, but does not depend on the input structure, nor the powerlaw is inherit
from the natural images powerlaw statistics (see Fig.4.5). Should we then
expect to find a similar match between edge-of-instability dynamics and op-
timal, smooth representations, for a different type of stimuli/inputs? In the
next section we will present some interesting preliminary results that show
how optimal internal representations can also arise for a close-to-critical
dynamics in ESNs fed with complex time series.

4.3.3 The representation of a strange attractor

Since our purpose for this section is to assess the validity of Eq. 4.1
for the neural representations of input time-series, we will resort to the
classical Lorenz dynamical system, which is described by the following set
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Figure 4.6: Optimal performance and smooth representations meet near the
edge-of-instability. Accuracy in MNIST testset (blue dots), maximum Lyapunov ex-
ponent (orange line) and best fit exponent for the power-law spectrum of the activity
covariance matrix (purple line). Errors were estimated as the standard deviation over ten
different realizations of the ESN.

of differential equations:

ẋ = σ(y − x) (4.7)

ẏ = rx− y − xz (4.8)

ż = −bz + xy (4.9)

with σ > 0, b > 0 and r > 0. In particular, we will be using the original
choice of parameters in Lorenz’s paper (σ = 10, r = 28 and b = 8/3)
for which the trajectories are known to generate an strange attractor with
fractal structure (Strogatz 2000; Sprott 2003). This will be particularly
useful, because the embedding dimension for the Lorenz system with this set
of parameters has been already calculated, with a value dl ∼ 2.1 depending
upon the algorithm being used (see Sprott 2003 for more details about the
different definitions of attractor dimension).

Therefore, in this section we will follow the training protocol presented
in Section 3.2, using u(t) = {x(t), y(t), z(t)} as the input to the reservoir.
More specifically, Lorenz equations were integrated (and sampled) with a
time step ∆t = 0.005 to retrieve Ttrain = 10000 points for the training set,
then re-scaled so that all three variables of the time series lie within the
[0, 1] range.

The reservoirs were constructed with N = 800 units, each connected
on average to 10% of all existing units. Recurrent and input weights were
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Figure 4.7: Smooth, high-dimensional internal representations arise near the
edge-of-instability. Exponent for the power-law decay of the spectrum of the activity
covariance matrix as a function of the spectral radius (ρ) and input scaling factor (ε) of
the reservoir, plotted together with the maximum Lyapunov exponent (MLE) color-coded
within the surface. The insets correspond to the activity covariance matrix eigenspectrum
measured in three different points of the parameter space, where the variance in the n-th
dimension (n-th eigenvalue) scales as a power-law n−µ of the rank. The purple plane
marks the boundary µ = 1 + 2/dl ≈ 1.95 for a critical smooth representations of the
Lorenz attractor.

drawn from a uniform distribution in the [−1, 1] range. As in the case of
input images, the reservoir dynamical regime was modified by tuning the
input scaling factor, ε, and the spectral radius of the internal connectivity
matrix, ρ.

To see if there is a dependence between the smoothness of the represen-
tation manifolds and the dynamical regime of the network, we constructed
ESNs with different sets of hyperparameters {ρ, ε}, then collected the in-
ternal states x(t) for each point of the input training set. Just as in Fig.4.4
for the case of input images, we plotted in Fig.4.7 the exponent µ for the
powerlaw decay of the signal correlation eigenvalue spectrum against ρ and
ε, together with the MLE (color-coded) which will serve us as an order pa-
rameter for the dynamical transition. Notice how, once again, the critical
exponent µc = 1 + 2/dl ≈ 1.95 (marked with a black, continuous line) is
reached right before the onset of the unstable regime.

Interestingly, using a time series with a low-dimensional attractor dy-
namics as input can provide us with a very illustrative picture of what it
means to encode information in high-dimensional smooth manifolds. In
Fig.4.8 we plot the dynamics of the reservoir units (i.e., the internal repre-
sentation of the input training set) projected into the first three principal
directions, along with the eigenvalue spectrum for the signal covariance ma-
trix for the four points A, B, C, and D marked in Fig.4.7. We can see how,
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Figure 4.8: Reservoir manifolds in PCA space Top row: projection of the reservoir
activity during the training into its three first principal components. Bottom row: activity
covariance matrix eigenspectrum, together with the best powerlaw fit (red dashed line)
and the theoretical boundary for smoothness of the representation (gray dotted line).
From left to right, columns correspond to points A, B, C and D of Fig.4.7.

deep into the stable regime (point A, MLE = −0.798), the projected dy-
namics follow very closely the trajectories of the original Lorenz attractor,
which means that the state of the system at each time step is fundamentally
determined by its current input. As we approach the critical point (point
B, MLE = −0.0007), the representations, when projected into the three
directions of maximal variability, diverge considerably from the manifold
spanned by Lorenz’s attractor, but are still continuous and differentiable,
as evinced by the smoothness of the curves. Close to the critical point but
already into the unstable regime (point C, MLE = 0.028)) the trajectories
become ragged, reflecting the loss of differentiability in the manifold, as
predicted by an exponent 1 < µ < 1 + 2/d. Finally, deep into the unsta-
ble regime (point D, MLE = 0.122)) the internal representation becomes a
“spiky” ball in a very high-dimensional space, that is not continuous nor
differentiable.

To further demonstrate that the representation in point B (i.e., close
to the edge of instability) is able to capture finer details of the signal vari-
ance compared to the more “stable” encoding in point A, we projected the
internal dynamics into the first 5 principal components and plotted the tra-
jectories along each pair-wise combination of these directions, showing that
lower-rank PCs encode relevant dynamics in the close-to-critical case, but
account only for noisy fluctuations when the system dynamics is very stable
(see Figs. D.1-D.4 in Appendix D).

Finally, in this last part of the chapter we will get back to the question
of performance from a ML point of view, this time working on a time-series
prediction task.
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4.3.4 Solving a time-series prediction task

For each ESN characterized by a set of hyper-parameters {ε, ρ}, the
network was trained on a one-step-ahead prediction task to infer {x(t +
1), y(t + 1), z(t + 1)} of the Lorenz attractor from {x(t), y(t), z(t)}. For
that purpose, the output weights were computed using a ridge regression
over the responses of all units to the input training set, with regularization
parameter β = 10−7 (see Section 3.2 ). For testing, the ESN was asked to
predict in autonomous mode (i.e., using the output at time t as input in
time t + 1) the next Ttest = 600 points following the end of the training
series. The performance was assessed using two different measures: the
root mean-square error (RMSE) between the predicted and target series, as
defined in Eq.3.6, and the furthest predicted point (FPP), using a tolerance
threshold of γ = 0.02 (see Section 3.2 in chapter 3).

Fig.4.9 shows maps akin to Fig.4.7 for the RMSE (left) and FPP (center)
over different dynamical regimes of the ESNs, as determined by the MLE
(color coded). Once again, optimal performance (as given by a minimum of
the RMSE and a maximum of the FPP) is achieved within the stable regime
but right before the onset of instability. The results for a particular cross-
section (marked with a white dashed line on the FPP-map) for a fixed value
ε = 0.73 are plotted in Fig.4.9 (right), where the error bars are computed
as the standard deviation over 10 different of the ESN for a given set of
parameters. Besides the fitted exponent µ for the covariance eigenvalues and
the MLE, we also plot the participation dimension D of the representational
manifold, as typically defined by:

D =

(∑N
i λi

)2
∑N

i λ
2
i

(4.10)

where λi are the eigenvalues of the covariance matrix. Intuitively, if all N
units in the reservoir were independent of each other and had the same
variance, then all eigenvalues would be equal and D = N (Litwin-Kumar
et al. 2017). Conversely, if the activity of the units is correlated so that
responses are distributed equally in each dimension of a d -dimensional rep-
resentational subspace of the full N -dimensional neural space, then only d
eigenvalues will be nonzero and D = d. Fig.4.9 (right) shows that not only
optimal performance and smooth representations with µ ∼ 1 + 2/dl meet
right before the critical point (green region, with MLE ≲ 0 ), but also that
the system undergoes a transition from a low-dimensional encoding (with
D ∼ dl) to a high-dimensional encoding (with D ≫ dl) that is concomitant
with the underlying dynamical transition.

Finally, to further visualize the predictive ability of the ESNs at different
points of the hyperparameter space, we show in Fig.4.10 the predicted and
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Figure 4.9: Performance is enhanced right at the edge of instability. Left: surface
plot for the root mean-square error (RMSE) between the predicted and target series
during the test set. Discrete points in the surface were computed as the average across
10 different realizations of an ESN with parameters {ρ, ε} at each point, covering a 400-
points grid within the range shown for ρ and ε. The surface was then constructed using
a cubic polynomial interpolation. Center: same as before, but now the furthest predicted
point (FPP) is represented in the z-axis. A trajectory of constant value ε = 0.73 across
the surface is plotted in dashed white line. Right: from top to bottom, the FPP (in
logarithmic scale), RMSE, MLE, powerlaw exponent µ and participation dimension D
are plotted against the spectral radius along the hyperparameter trajectory with constant
ε = 0.73

.
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Figure 4.10: Prediction of 1000 points of the Lorenz attractor. From left to right,
each column corresponds to points A, B, C and D of the hyper-parameter space in 4.7.
Within each column, the three predicted coordinates {x(t), y(t), z(t)} for a 1000-points
test series of the Lorenz system are plotted (continuous line), together with the target
series (dashed line).

target multivariate time series in points A, B, C and D of Fig.4.7, during
a 1000-points prediction test. As we can see, predictions at either side of
the critical region are considerably worse than that of an ESN trained in
point C, whose dynamics present an average MLE very close to the critical
value of zero. Interestingly, for a network trained in a strongly unstable
regime (point D), the activity of the reservoir units can sometimes end up
in regions that are completely outside of the typical response manifolds to
the input series, leading to predicted outputs that are not even contained
within the training set (see, for instance, the existence of predicted values
z(t) > 1 in the regime of point D, although {x(t), y(t), z(t)}train ⊂ [0, 1]3).

4.4 Conclusions and pespectives

In Stringer et al. 2019a is was observed that neural encoding of different
visual stimuli in the mouse V1-cortex was close to optimal, constrained by
requirements of continuity and differentiability of the neural response man-
ifold. In this chapter, we opened the door to the possibility that optimal,
continuous and differentiable response manifolds emerge for neural dynam-
ics laying close to a critical point. Indeed, we have shown that a simple
ESN with randomly-connected units in the reservoir, when tuned close the
edge of instability, is capable of reproducing power-law exponents similar
to those found in mouse V1-cortex for the decay of the covariance matrix
eigenspectrum, as well as the dependence of such exponents with the embed-
ding dimension of the inputs. Intuitively, a slower decay of the eigenvalue
spectrum (i.e., a smaller exponent µ), translates into an enhanced ability
of the network to encode finer details of the input-related variance in new
relevant principal directions. However, if the decay is too slow, an exces-
sive importance is given to such fine details at the cost of hampering the
existence of a smooth manifold.

On the other hand, adding stochasticity in the form of small-amplitude
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white noise naturally led to flatter eigenspectra, much like those found when
PCA is performed over raw experimental data. Nevertheless, one can use the
same cvPCA technique introduced also in Stringer et al. 2019a to extract the
input-related variance of the activity, thus obtaining exponents similar to
the fully deterministic case. This result suggests that the role of spontaneous
activity and trial-to-trial variability on the representation of external inputs
can be easily accounted for in our simple echo-state-network model.

We remark that, although giving a biological interpretation of the train-
ing algorithms and time-discrete dynamics of our simple model is out of
question, there are still a lot of insights that can be drawn from simula-
tions that try to mimic the experimental protocols. For instance, although
we know that visual stimuli are not processed in a time-sequential manner
across one of their spatial directions, we can argue that close to the critical
point, because the echo-state property is enhanced and the reservoir states
hold a fading memory of past inputs (Barancok et al. 2014; Manjunath et al.
2013; Bertschinger et al. 2004), the network units could effectively observe
correlations between spatially distant points of the images.

Indeed, results obtained on image-classification and time-series predic-
tion tasks suggest that input-representation manifolds that are critically
high-dimensional (from the point of view of their analytical properties) may
serve a bigger purpose than just being a mathematical curiosity, as ESNs
show a better performance when poised near such a critical point, while
the accuracy falls rapidly as soon as the representation manifold becomes
fractal.

We also find important to clarify that further work needs to be done
in order to fully characterize the stable-to-unstable transition that they
dynamics of reservoirs undergo. Although the term edge of chaos as been
widely employed in the literature to refer to this type of transition (Morales
et al. 2021b; Boedecker et al. 2011; Barancok et al. 2014), this terminology
—and the concept of chaos itself— should be taken with a grain of salt, as
it is not devoid of criticism in this context. As pointed out in Manjunath
et al. 2013, ESNs are an example of nonautonomous dynamical systems,
for which typical concepts based in the theory of autonomous systems (e.g.,
“sensitivity to initial conditions”, “attractor” and “deterministic chaos”)
do not directly apply (Clemson et al. 2014; Gandhi et al. 2012). Local
perturbation experiments cannot therefore represent an ultimate evidence
of chaotic dynamics in non-autonomous systems, since it might well be the
case that the input drives the system towards and expanding dynamics
for a certain time span, while the system shows on average a contracting,
non-chaotic dynamics. Despite these caveats, at the light of the presented
results it appears like there is indeed an actual dynamical phase transition
occurring as the maximum Lyapunov exponent crosses from negative to
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positive values. Thus, in any case, it seems a sensible choice to use such
a quantity as a control parameter when analyzing the underlying neural
representation of external inputs.

Interestingly, leaving aside the challenges of determining the existence
or absence of a chaotic regime, the effects of undergoing such a transition
can be also visualized looking directly at the activities of neurons inside the
reservoir against the incoming input. Fig.4.11 shows that, if the network is
deep in the stable state, where MLE < 0 but not close to the transition,
neural responses are quite heterogeneous when compared among reservoir
units, but also highly localized within each neuron phase space. This means
that the individual neurons show a strongly Markovian dynamics, where the
state at time t is mostly determined by the current incoming input, with
little influence from the history of the system. On the other hand, dynami-
cal states characterized by MLE > 0 have neurons whose response extends
across the full range of the non-linearity (with higher probability along the
tails, reflecting a saturated behavior), but it is this same ”phase space ex-
pansion” (akin to the one observed in Chapter 3 for reservoirs undergoing
intrinsic plasticity changes for long periods) that makes units almost even-
tually indistinguishable from each other. It is only around the critical point,
that we find a trade-off between dynamical richness in individual activity
and variability across units.

Therefore, the presented results open the path for very exciting research
avenues at the boundary of biology and machine learning, calling for theoret-
ical formulations that can shed light into the fascinating properties of these
input-representation neural manifolds and their relation with the criticality
hypothesis.
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Figure 4.11: Enhanced dynamical range of individual units near criticality.
For the different rows, ESNs were initialized using the exact same set of parameters
{W res,W in, ρ = 2}, but tuning the dynamical regime through by changing the input
scaling (from top to bottom: ε = 2, 0.5, and 0.01, respectively). Each column represents
the activity of a particular unit of the reservoir against the incoming input to the unit for
three different images (color-coded).
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Chapter5

Representational drift and the role
of learning

“Liza! What was it yesterday, then?”
“It was what it was.”
“That’s impossible! That’s cruel!”

Fyodor Dostoevsky, Demons

“I am made and remade continually.
Different people draw different words
from me.”

Virginia Woolf, The Waves



CHAPTER 5. REPRESENTATIONAL DRIFT

5.1 Introduction: an everchanging translation

Our brain is a universal encoding machine, trained over millions of years
of evolution to process, represent, and interpret the thousands of incoming
stimuli we are exposed to on a daily basis. As we saw in Chapter 4, an
increasingly accepted hypothesis posits that the brain encodes the informa-
tion about incoming stimuli in patterns of spiking activity in sensory areas,
which constitute internal representation of the external world. We argued
that this representational phase was then followed by a second, perceptual
stage, in which conscious awareness of reality emerged as a read-out of this
internal representations by higher cortical areas. Thus, within this frame-
work, knowledge of an objective reality could be faithfully encoded in a
“physical” representation of firing potentials within the neural space.

Over the past decade, however, the idea that these neural representations
could be stable over time (i.e, the existence of a fixed translation from
reality to neural codes) has been challenged by a number of experiments
that simultaneously recorded the activity of hundreds of neurons in regions
such as the hippocampus (A. Rubin et al. 2015; Ziv et al. 2013), the primary
olfactory cortex (Schoonover et al. 2021), or the visual cortex (Marks et al.
2021; Deitch et al. 2021). In general terms, it is shown that the responses
of neurons to a given set of stimuli is fairly stable at short time-scales
(different trials within the same experiment), but can change over a span
of days or weeks. This implies that neurons that were initially selective to
a particular stimulus could stop being responsive after several days, and
the other way around: neurons not involved initially in the representation
of a given stimulus (i.e., unresponsive) could become selective to such an
input within the same experimental conditions after a number of days. The
experimental observation of what is known today as representational drift
(RD) rapidly captured the interest of the scientific community, fostering a
number of analytical and computational studies that aimed to explain this
phenomenon.

In this chapter we will develop a biologically-realistic computational
model to analyze the effects of spike-time dependent plasticity (STDP) as a
potential mechanism behind the observed RD in olfactory cortex. In partic-
ular, we will show how STDP-mediated changes in the lateral olfactory track
(LOT) connections under odor stimuli could account for the experimentally-
observed slowing-down of the drift with the frequency of stimulus presenta-
tion.

Before delving any deeper into the particularities of odor encoding and
the olfactory cortex structure, let us recapitulate first the observed empirical
evidence for representational drift, as well as some of the already existing
theoretical and computational approaches to the problem.
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5.1.1 Experimental evidence of representational drift

Experimentally, representational drift has been found to affect spatial
location representations in the hippocampus (Ziv et al. 2013; Khatib et al.
2022), task-information encoding in the posterior parietal cortex (Driscoll
et al. 2017), odor encoding in olfactory cortex (Schoonover et al. 2021) and
encoding of natural images in visual cortex (Marks et al. 2021; Deitch et al.
2021). On the other hand, population encoding in mouse motor cortex and
in the forebrain of the zebra finch has been shown to remain stable across
weeks (Katlowitz et al. 2018; Dhawale et al. 2017).

We remark that, when comparing the effects and properties of RD in
different regions of the brain, it is not uncommon to find experimental results
that are at odds with each other. For instance, despite the observed changes
at the single-cell level, overall population statistics have been shown to
remain invariant across weeks in the piriform cortex (Schoonover et al. 2021)
and posterior parietal cortex (Driscoll et al. 2017). In the hippocampus,
however, drift at relatively short time-scales of hours seems to be associated
with an increased sparsification of the population response (Khatib et al.
2022). Moreover, neural population responses to drifting gratings in mouse
visual cortex have been shown to be stable across weeks, while the same
region showed drifting responses to natural movies across weeks, pointing
to the existence of a stimulus-dependent drift in visual cortex (Marks et al.
2021). In contrast, drift rate in olfactory cortex was demonstrated to be
fairly independent from the nature of the odor (Schoonover et al. 2021).

5.1.2 Existing models of representational drift

In order to study the overall mechanisms that could give rise to RD,
computational approaches have typically resort to general models of leaky
integrate-and-fire (LIF) or rate networks, leading to the formulation of a
number of hypotheses regarding the origin of the drift. These include: i)
symmetric STDP or synaptic turnover, in combination with homeostatic
normalization of synaptic weights (Kossio et al. 2021); ii) noisy weight up-
dates with additive ((Qin et al. 2021)) or correlated ((Rule et al. 2022))
noise; node or weight dropout (Aitken et al. 2021); and implicit regulariza-
tion of the population activity (Ratzon et al. 2023).

Beyond studies whose aim is to find the underlying mechanism of RD,
extensive work has also been done in trying to explain how the brain can
extract consistent information of the external world from drifting represen-
tations. Possible explanations include the existence of an invariant, rotating
submanifold in the representation space (Qin et al. 2021), a tracking pro-
cess of the internal states by a “self-healing” readout (Rule et al. 2022),
or the existence of a constant representational structure through drifting
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assemblies (Kossio et al. 2021). As a different perspective into the problem,
in (Druckmann et al. 2012) the authors challenge the common assump-
tion that unstable activity encodes time-varying properties of the system,
showing how redundancy and sparsity can help to shape time-invariant rep-
resentations from time-varying responses of individual neurons.

In this chapter, we will study the effects of representational drift on the
population encoding of odors within the piriform cortex, as experimentally
observed in Schoonover et al. 2021. In particular, we cast our attention into
the empirically-observed dependency of the drift rate with the frequency of
stimulus presentation (and hence, the role of learning), for which, at the
time of writing, no theoretical explanation has been proposed to the best of
my knowledge.

Notably, when talking about learning, one needs to be careful and dis-
tinguish between two phenomenologically different types of representational
drift, often sheltered under the same term. On the one hand, there is ex-
perimental evidence of an input-evoked fast drift, observed in a time-scale
of hours during representation learning of a new environment in the mouse
hippocampus (Khatib et al. 2022). This type of drift has been recently as-
sociated to an increase in the sparsification of the population code during
learning (Ratzon et al. 2023). On the other hand, there is evidence of a slow
drift that takes place over longer periods of weeks, even in the absence of
stimuli (Schoonover et al. 2021), for which the population statistics (average
population activity, sparsity of the responses, etc.) remain invariant.

To provide the reader with some more context into the problem, the next
section presents an overview of the processes involved in the perception of
odors, with special emphasis on the architecture and types of neurons that
give rise to the odorants internal representations. With this knowledge of
the underlying biological processes —and based upon further experimental
results regarding odor encoding— we will then hypothesize on the possible
mechanisms that could give rise to representational drift in the olfactory
cortex before we finally set out to construct an operating model whereby
we can mimic the experimental results in Schoonover et al. 2021.

5.2 Odor encoding in the olfactory cortex

5.2.1 A journey through perception: from latency to ensem-
ble coding

In a time span of less than a second, inhalation unfolds a journey
through perception as volatile molecules in the environment, known as odor-
ants, bind to receptors in olfactory sensory neurons (OSNs) of the nasal
ephitelium. In 1991, the pioneering work of Buck and Axell revealed that

100



5.2. ODOR ENCODING IN THE OLFACTORY CORTEX

each OSN expressed just one out of ∼ 1000 different odorant receptor genes
(L. Buck et al. 1991). Although these receptors are each characterized by
a high affinity to a particular odorant, they are still broadly tuned and can
bind to other volatile compounds with a lower affinity. Nevertheless, it was
shown that OSNs presenting the most affine receptors to a particular odor-
ant at the given concentration always fire first (Malnic et al. 1999; Jiang
et al. 2015).

On the next step of odor processing, all OSNs expressing the same type
of receptor will project their axons onto a unique pair of glomeruli in the
olfactory bulb (OB) (Mombaerts et al. 1996; Hálasz et al. 1993). These
spheroidal structures host the synaptic connections between the OSN axon
terminals and the dendrites of the so-called secondary neurons: the mi-
tral/tufted cells (MTCs). Thus, for a given odor, although OSNs with less
specific receptors will be eventually activated, bulb-cells associated to the
most specific receptors will fire earliest, effectively transforming the initial
receptor-specific encoding into a temporal encoding in the OB.

Once we cross from the OB into the olfactory cortex, things begin to
get a bit more complicated. As the information encoded in spatio-temporal
patterns of MTCs activity is conveyed through random and overlapping
lateral olfactory track (LOT) connections into the piriform cortex (PCx), the
original temporal encoding is translated into an ensemble code: odor identity
in the PCx is determined by specific sets of principal neurons (pyramidal
cells, mainly) recruited during the sniff, with no other information about
the temporal profile of the incoming spikes (Stern et al. 2018). In fact, it
has been shown that cortical odor responses are determined by the earliest-
active glomeruli (the ones with higher specificity for the given odorant),
thanks to the fast recruiting of feedback inhibitory neurons (FBINs) that
can suppress the cortical responses to later, less-specific OB inputs.

As we have seen in the introduction of this chapter, many different
mechanisms have been proposed to explain the phenomenon of RD in neural
networks. Before delving into the particular problem of modeling the drift in
an olfactory cortex model, we will first hypothesize on the biological source
of such drift, assessing the validity of already existing models upon their
ability to reproduce some of the experimental findings regarding RD in the
olfactory cortex.

5.2.2 Pruning the hypothesis tree

Given the overall complexity of the odor encoding process from the
arrival of odorant molecules in the nasal epithelium to the activation of
pyramidal cells in the PCx, finding the link within this chain whence drift
emerges might seem a daunting task. Let us, however, go through some

101



CHAPTER 5. REPRESENTATIONAL DRIFT

of the experimental findings that could serve as a guide to construct our
model.

In Kevin A Bolding et al. 2020 it was observed that recurrent interactions
at the PCx helped to rapidly recruit inhibitory feedback, thus halting the
PCx response by discounting the effect of OB glomeruli with larger latency
times (i.e., of those MTCs that got activated later on the sniff, and were
therefore not so specific to the presented odorant). In fact, within the same
study, the authors expressed the tetanus toxin in PCx neurons to block their
ability to excite each other through recurrent interactions, which lead to an
amplification of the PCx response, paired with an enhanced sensitivity of
the encoding to odor concentration. These same findings were also validated
in the computational model presented in Stern et al. 2018, showing that the
identity of odors in PCx representations is fundamentally determined by
the identity of those pyramidal neurons that are selectively activated by
early-responding glomeruli. Thus, one can conclude that odor identity in
PCx is mostly encoded in what we will call “primary” pyramidal neurons,
i.e., neurons that are directly recruited through OB excitatory inputs.

On the other hand, it was reported in Schoonover et al. 2021 that only
around 2.5% of the recorded pyramidal neurons in the PCx showed a sta-
ble response to a given set of odorants across the 32 days that lasted their
experiment. Thus, given the accumulating evidence indicating that MTCs
responses at the OB remain stable over long periods (of at least several
months, Bhalla et al. 1997; Hiroyuki K. Kato et al. 2012), it follows that
any proposed drift mechanism that aim to account for such a strong re-
configuration must necessarily affect the identity of the primary pyramidal
cells, recruited by the OB.

As we saw in Chapter 3, there are fundamentally two different forms
of plasticity mechanisms whereby neural networks can adapt their activ-
ity: synaptic plasticity, which affects the strength of the connections be-
tween neurons; and non-synaptic or intrinsic plasticity, which can alter the
excitability of the neurons —typically through structural changes affect-
ing voltage-dependent membrane conductances in the axon, dendrites, or
soma. In view of the empirical evidence pointing at the fundamental role
of synaptic modifications in different parts of the olfactory cortex (D. A.
Wilson et al. 2004; Ito et al. 2008; T.-F. Ma et al. 2012; Y. Cohen et al.
2015; Jacobson et al. 2018; Kumar et al. 2021), we will focus on synaptic
plasticity mechanisms as the most plausible source of representational drift.
More specifically, in the remaining of this chapter we will see that a simple,
although biologically realistic, spike-time dependent plasticity (STDP) rule
(Fig.5.2) can reproduce to a great extent the empirically observed measures
of RD.

102



5.3. EXPERIMENTAL SETUP AND METHODS

Figure 5.1: Model and experimental setup. (a) Diagram of the modeled olfactory
cortex, depicting the different types of neural populations and their interactions. (b)
Raster plots for the activity of MTCs, pyramidal neurons and FBINs, together with a
trace of the average population activity across time. (c) Experimental protocol for odor
presentation, following the experiments in Schoonover et al. 2021.

5.3 Experimental setup and methods

5.3.1 Modeling the olfactory cortex

In this section we present a fairly realistic model for the olfactory bulb
(OB) and piriform cortex (PCx) based on the original work of Stern et al.
2018, which we will be using across the remainder of the chapter (see Fig.
5.1a).

Unlike other sensory stimuli such as sounds and images, which can be
easily characterized computationally, simulating real molecules and their mi-
croscopic effects over biologically-realistic odorant receptors is a daunting
task. Therefore, following the approach in Stern et al. 2018, here we model
odorant identity directly in terms of a latency encoding in the OB. Unless
otherwise stated, the OB will consist of 2000 mitral/tufted cells (MTCs) 1,
each connected to one of the existing 100 glomeruli, so that on average each
glomerulus projects into ∼ 20 MTCs. To model the responses of MTCs to

1For simplicity, we will not distinguish between mitral and tufted cells, although it is
known that the later present shorter response latencies.
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different odorants, each glomerulus was assigned an onset latency time with
respect to the time of odor presentation, independent of the odor concentra-
tion, but specific to the odor identity. This onset latency is then inherited
by all the MTCs projecting into the given glomerulus. In this way, the ac-
tivity of cell i in response to odor o will be modeled as an inhomogeneous
Poisson process whose rate is given by:

roi (∆t
∗) =

{
fbl, if ∆t∗ < τ̃ oi or ∆t∗ > τinh

fexc, otherwise
(5.1)

where ∆t∗ = t − t0 is the time elapsed from the beginning of a respiration
cycle, at t0, and τ̃ oi is the onset latency time of neuron i under odor o.
Each respiration cycle consists of an inspiration period of length τins =
150ms, followed by an expiration period lasting τexp = 350ms (see Fig.
5.1c). Following the work in Stern et al. 2018, we chose fbl = 1.5Hz and
fexc = 100Hz for the baseline and excited rates of the MTCs. For each
odor, latency times with respect to the time of odor presentation, τ̃ oi , were
randomly drawn from a uniform distribution such that, at reference odor
concentration, only an average 10% of all MTCs will become responsive
to a given odor within the inhalation period (i.e., will have a latency time
τ̃ oi < τinh). Thus, in this model, the identity of an odor o becomes fully
characterized by the set τ̃ oi of all glomeruli latency times. An example of
the emergent pattern of mitral activity during three consecutive respiration
cycles under a particular odor is given in Fig. 5.1b (upper row).

To characterize the PCx and its inputs, the model proposed by Stern et
al. simplifies the original architecture by disregarding the effects of semilu-
nar cells, thus assuming that pyramidal neurons can only receive excitatory
input directly from MTCs through LOT connections, or from recurrent con-
nections with other pyramidal cells. In this work, we will further simplify
the model by neglecting the effect of feedforward inhibitory neurons (FFINs)
—which simply modulate the amplitude but not the shape of the pyrami-
dal responses to an odor Stern et al. 2018. Thus, inhibition of pyramidal
cell activity is limited to feedback inhibitory neurons (FBINs) (see Fig.
5.1a), which have been shown to be responsible of suppressing the effect of
later MTCs inputs (i.e., having longer onset latencies), halting the explosive
growth of activity in pyramidal neurons (Stern et al. 2018; Kevin A Bolding
et al. 2020; Kevin A. Bolding et al. 2018).

The below-threshold voltage dynamics of pyramidal and FBINs take the
general form of a LIF equation:

τm
dVi
dt

= − (Vi(t) − Vrest) +
Itoti (t)

gm
, (5.2)

where Itoti (t) = Iexci (t) + Iinhi (t) is the sum of all incoming excitatory and
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inhibitory currents to neuron i, τm is the membrane characteristic time
scale, gm is the membrane conductance and Vrest is the resting potential.
For pyramidal neurons:

τexc
dIexci

dt
= −Iexci +WMP

NMTC∑
j=1

∑
f

δ(t− tfj ) +WPP

NPY R∑
j=1

∑
f

δ(t− tfj )

(5.3)

τinh
dIinhi

dt
= −Iinhi +WFP

NFBIN∑
j=1

∑
f

δ(t− tfj ) , (5.4)

whereas for FBINs:

τexc
dIexci

dt
= −Iexci +WPF

NPY R∑
j=1

∑
f

δ(t− tfj ) (5.5)

τinh
dIinhi

dt
= −Iinhi +WFF

NFBIN∑
j=1

∑
f

δ(t− tfj ) . (5.6)

In the above equations, τexc and τinh represent the characteristic decay time
for the excitatory and inhibitory input currents, while WMP , WPP , WFP ,
WPF , and WFF denote the synaptic efficacies for the mitral-to-pyramidal,
pyramidal-to-pyramidal, FBIN-to-pyramidal, pyramidal-to-FBIN and FBIN-
to-FBIN connections, respectively. In order to account for the baseline
resting-state activity observed in the PCx in the absence of odor inputs, we
further extended the original model to include random Poissonian spiking
from all pyramidal neurons at a fairly slow rate, fspont = 0.3Hz. For sim-
plicity, we reabsorbed the membrane conductance gm into the definition of
input current, so that all currents and synaptic efficacies are now in units
of voltage.

Once a neuron reaches its firing threshold, Vth, at a given time, tf , its
membrane potential is reset and clamped to a value Vreset = −65mV for
a refractory period, τref , before it can evolve again according to Eq. 5.2.
Likewise, we did not allow the membrane potential to decrease below a
minimum voltage, Vmin = −75mV.

Default values for all the parameters used in the simulations —including
density and synaptic efficacies for all connectivity matrices, characteristic
time-scales for excitation and inhibition currents, etc.— can be found in
Appendix E.I.

5.3.2 Modeling the source of drift

It has been experimentally observed that long-term potentiation (LTP)
and long-term depression (LTD) of synaptic weights depend on the exact

105



CHAPTER 5. REPRESENTATIONAL DRIFT

timing of the pre- and postsynaptic spikes (Markram et al. 1997; Bi et al.
2001; Buchanan et al. 2010). LTP is typically induced when the presynaptic
spike precedes the postsynaptic one on an interval of 10 to 20ms, whereas
LTD occurs if the order of spikes is reversed (see Fig.5.2a). This mechanism
of STDP has been largely studied from a theoretical point of view (Rossum
et al. 2000; Gilson et al. 2011a; Gilson et al. 2011b; Carlson et al. 2013;
Effenberger et al. 2015)) and many models have been proposed to investigate
its functional implications (see Caporale et al. 2008 and Morrison et al.
2008 for reviews on the topic). Mathematically speaking, the change in the
synaptic weight induced by pre- and post-synaptic spikes at time tpre and
tpost, respectively, can be written as:

∆J = ηW (J ; tpost − tpre) (5.7)

where η is the learning rate and W (J ; tpost − tpre) is the plasticity window,
which can lead to potentiation (LTP) or depression (LTD) depending on
the relative timing of the spikes (see Fig. 5.2a):

W (J ; tpost − tpre) =


f+(J) exp

(
−|tpre − tpost|

τ+

)
, if tpre < tpost

−f−(J) exp

(
−|tpre − tpost|

τ−

)
, if tpre > tpost

(5.8)

where different choices of the scaling functions for potentiation, f+(J), and
depression, f−(J), can give rise to different models of STDP (Morrison et al.
2008). In this chapter we will be using a multiplicative STDP, as originally
proposed in Rossum et al. 2000 —on the basis of experimental observations
in (Bi et al. 1998)—, for which the LTP and LTD scaling functions read:

f+(J) = a+ , (5.9)

f−(J) = a−J , (5.10)

for some constant values a+ and a−. Remarkably, one can use the Fokker-
Plank formalism to derive the stationary probability distribution for the
weights (see Fig. 5.2b) under a general model of STDPs described by Eqs.
5.7 and 5.8, assuming uncorrelated inputs to the network (Gilson et al.
2011a):

P(J) =
N
B(J)

exp

[∫ J

0

2A(J ′)

B(J ′)
dJ ′

]
, (5.11)

where:

A(J) = η{τ+f+(J) − τ−f−(J)} , (5.12)

B(J) = η2{τ+
2

[f+(J)]2 +
τ−
2

[f−(J)]2} , (5.13)
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Figure 5.2: Spike-time dependent plasticity as the source of drift (a) In spike-time
dependent plasticity (STDP), a given connection from a pre-synaptic to a post-synaptic
neuron is potentiated when the post-synaptic neurons fires within a small time-window
after a spike of the pre-synaptic neuron. Conversely, depression of the synaptic efficacy
occurs if a post-synaptic spike is immediately followed by firing of the pre-synaptic neu-
ron. (b) Stationary probability distributions for the synaptic weights under uncorrelated
random inputs for a multiplicative STDP (red; Rossum et al. 2000), a non-linear tempo-
rally asymmetric STDP for two different values of the exponent µ (blue and green; (J.
Rubin et al. 2001)), and a logarithmic STDP (yellow; (Gilson et al. 2011a)).

and, in particular, the average equilibrium weight for uncorrelated inputs
under the multiplicative version of the rule is then given by ⟨J∗⟩ = (A+τ+)/(A−τ−).

We remark that, although all the analysis and simulations presented
in this chapter were derived using the multiplicative STDP proposed in
Rossum et al. 2000, a similar phenomenology can also be obtained with
other more complex STDP models such as non-linear temporally assymetric
STDP, with relatively large values of the exponent µ (J. Rubin et al. 2001);
and logarithmic STDP (Gilson et al. 2011a) (see Fig. 5.2b). On the other
hand, application of the original additive STDP model as formulated in S.
Song et al. 2000 eventually lead to run-away activity in the PCx, as a result
of the emerging bi-modal stationary distribution of weights.

5.3.3 Experimental setup

In order to compare the results of our simulations with the existing
empirical evidence, we will aim at reproducing the experimental setup and
analyses proposed in Schoonover et al. 2021, introducing some modifications
only when reducing the computational cost of the simulations becomes im-
perative.

Following the aforementioned study, the total simulated experiment con-
sists of 32 “days”, each divided into a transient period of 160s, where only
background pyramidal activity is present, and a test period during which 8
different odors were presented. Each odor is presented 7 times (trials) dur-
ing the test period, spanning 8 respiration cycles (4s) in each trial, followed
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by a 2s inter-trial transient (see Fig. 5.1c).

For each day d, odor o and trial m, population firing rates xd,o,m are
computed by averaging neural responses in time across four 2s windows after
odor onset, then concatenating the corresponding vectors so that xd,o,m ∈
R4Npyr , and finally subtracting the average baseline spontaneous rate during
odor presentation. Unless otherwise stated, all measures are performed on
such spontaneous, baseline-subtracted population vectors, which we may
refer to simply as representations.

To quantify the amount of drift over time, we resort to several mag-
nitudes as proposed in Schoonover et al. 2021. On the one hand, we will
define the correlation between same-odor representations at days p and q,
with p ̸= q, as the average over all odors of the Pearson correlation coeffi-
cient between trial-averaged rate vectors at the corresponding days:

cp,q =
1

nodors

nodors∑
o=1

⟨(xp,o − xp,o)(xq,o − xq,o)⟩
σxp,oσxq,o

(5.14)

where xp,o = M−1
∑M

m=1 xp,o,m is the trial-averaged population response
to odor o on day p, and σxq,o its standard deviation. Thus, the average
correlation between same-odor responses separated by a time interval of
∆-days in their measurements, can be defined as:

c∆ =
1

n∆

∑
p,q : |p−q|=∆

cp,q (5.15)

where n∆ is the number of pairs of test days separated by a time interval
∆.

On the other hand, the average angle between a pair of population vec-
tors representing the same odor at days p and q can be written as:

θp,q =
1

n∆

nodors∑
o=1

θop,q =
1

nodors

nodors∑
o=1

cos−1

(
xp,o · xq,o

∥xp,o∥∥xq,o∥

)
, (5.16)

and the average corrected angle between any two representations measured
on tests separated by ∆-days:

θ∆ = n−1
∆

∑
p,q : |p−q|=∆

θp,q − θ , (5.17)

where θ is the average within-day angle between same-odor population re-
sponses, when compared across even and odd trials (see Appendix E.II, Eq.
E.5).
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We can now give a measure for the rate of drift (in angles per day and
corrected for within-day fluctuations) in terms of this last quantity:

r =

〈
θ∆
∆

〉
∆

. (5.18)

where the average is taken across all possible time intervals, ∆, between any
pair of test days.

5.4 Understanding representational drift in the pir-
iform cortex

For the results presented in the following section, we used networks
of 1000 pyramidal neurons, 2250 mitral neurons and 125 FBINs, which
represent a 10% of the original model size in Stern et al. 2018. All re-
sults are derived considering STDP-induced changes at the lateral olfactory
track (LOT) connections, following the arguments laid out in Section 5.2.2.
Moreover, to respect the sparsity in the connectivity between MTCs and
pyramidal cells, we only allowed weight changes in existing connections.
Parameters used for modeling the networks (sparsity of connections, weight
values...), their dynamics (baseline rates, threshold voltages, timescales for
excitation and inhibition...) and STDP-mediated weights updates (charac-
teristic time scales of LTP and LTD, maximum weight efficacy...) were kept
at biologically plausible values when possible (see Appendix E.I for details
of all the parameters values used in the simulations).

We can now proceed and, following the experimental protocol described
in Section 5.3.3 (see also Fig. 5.1c), show different “odorants” —i.e., dif-
ferent patterns of MTC activity as input to the PCx— at 8-days intervals,
recording for day d, odor o and trial m the population responses of the
pyramidal neurons. We recall that, between these “odorant presentations”
which take place every 8 days, the PCx presents a sustained resting-state
activity that arises from both, random incoming inputs from baseline ac-
tivity at the MTCs, and low-rate random Poissionian spiking of pyramidal
neurons. We thus hypothesize that a slow but constant drift in the repre-
sentation of odorants would inevitably emerge from a drift of the weights in
the LOT connections, due to spontaneous STDP-mediated changes under
such noisy background of activity.

Fig. 5.3a shows the change in sensitivity for three odorant-unit pairs
(i.e., the response of a particular pyramidal neuron to a given odorant) in
test days across the 32 days of the experiment. See, for instance how neu-
ron #758 loses its responsiveness to odorant one after the first 8 days, while
responses of neuron#643 remains stable across all days. In Fig. 5.3b, we
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Figure 5.3: Piriform cortex responses changes over 32 days. (a) Raster plots and
peristimulus time-histograms for three pyramidal neurons responses to a given odorant,
at each of the test days.(b) Z-scored activity of a subsample of 200 units, ordered in all
cases by their value on day 0 from strong (red) to weak (blue) responses.

z-scored the activity of all odor-unit pairs in our simulations (substracting,
for each unit, the average spontaneous activity when no odor is presented,
then dividing by its standard deviation) and ordered the responses from
higher (red) to lower (blue) activity on the first day. As days go by in our
simulations, we can see how the selectivity of units change, with new respon-
sive odor-unit pairs emerging, while other —initially responsive— pyramidal
neurons have lost their sensitivity by the end of the experiment. Fig. 5.4
reproduces the main results observed in Schoonover et al. 2021 regarding
the emergence of representational drift at an ensemble-encoding level. First,
we notice how the firing rate of individual units changes across days, with
neurons that both gain and loose sensitivity to particular odorants across
the experiment (Fig. 5.4a). Correlations between all trial-averaged popu-
lation responses to a common odorant where computed across all possible
pairs of days (Fig. 5.4b, left), and their average value plotted against the
time interval between same-odorant representations (Fig. 5.4b, right). A
similar measure, but for the average corrected angle (Eq. 5.17) between
any two representations of the same odorant on different days is depicted
in Fig. 5.4d (right), together with the cumulative distribution functions for
the angles across days, within-day, and across-odorants Fig. 5.4d (left). The
drifting in the representations is reflected thus as a decrease of the correla-
tions (and an increase of the angle) between representations corresponding
to the same stimuli across days. In our simulations, we measured, using Eq.
5.18, an average angle drift rate r = 1.44◦ ± 0.56◦ (Fig. 5.4c), in excellent
agreement with the empirical observations, for which rexp = 1.3◦ ± 1.2◦.

In Schoonover et al. 2021 it was observed how, despite the individual
drifting responses of neurons, the overall population statistics remained sta-
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ble across days, suggesting that the general properties of odorant encoding
changed only marginally over time. In fact, it was shown that the per-
formance of a linear classifier trained to decode the odors from the PCx
activity on earlier days, but then tested on later days, deteriorated as a
function of the time interval between training and testing. On the contrary,
within-day performance (i.e., decoding of the stimuli using a linear classifier
trained on even trials and then tested in odd trials within the same day) re-
mained fairly stable across the 32 days of the experiment, meaning that the
new odor representations emerging through drift hold the same encoding
capabilities as the original ones. To test whether this invariant population
properties where also present in our model, we measured the fraction of re-
sponsive neurons, population sparseness (Eq. E.2), lifetime sparseness (Eq.
E.3) and within-day correlations (Eq. E.4), showing how all these properties
remained invariant across days (see Fig. 5.4f). Similarly, we show high and
stable within-day performance in the classification of odors using a linear
classifier, but a deterioration in the decoding ability when the classifier was
trained in earlier days and then tested several days later (Fig. 5.4c). Defi-
nitions for all the above quantities and further details on the classification
algorithm can be found in Appendix E.II.

Given the presented results —which are in excellent agreement with the
empirical observations of Schoonover et al.— and assuming that the same
phenomenology would most likely apply to human brains, how can a con-
sistent perception of an objective reality (i.e., a given odorant in this case)
emerge from the readout of constantly changing internal representations?

One possibility, for instance, considers that downstream regions per-
forming such a readout could adapt to the drift provided there was some in-
variant geometry of the representation manifold (for example, if all induced
changes could be mapped to a rotation or other type of transformation of
an invariant manifold in a high-dimensional space (Qin et al. 2021)).

Notably, the authors in Schoonover et al. 2021 also tested whether the
geometry of odour responses was conserved despite drift. If one considers
the mean response of all the neurons over the duration of the odorant presen-
tation as a point in an N -dimensional space, then all points corresponding
to different odorants will span a certain response manifold, as we already
discussed in Chapter 4. One can then measure changes in the geometry of
such a manifold by comparing the relative angle between pairs of triples of
connected vertices on different days, where each vertex is the PCx represen-
tation of a given odorant (see Fig. 5.5a). Thus, within each individual day,
p, an odor similarity matrix was defined as a matrix Ap ∈ RM×nodors whose
columns, a•i, contain the M = nodors

(
nodors−1

2

)
possible angles between any

two edges connecting the representation (vertex) for odor i. Fig. 5.5b shows
the values of these similarity matrices on different days of the experiment,
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Figure 5.4: Odor representations drift despite invariant population statistics.
(a) Firing rate responses of odor-unit pairs compared across different intervals. (b)
Average population vector correlations for same-odor representations across days (left)
and decay of the correlations against the time interval between representations. (c)
Classification accuracy for a support-vector machine trained to classify the odors using
the activity of 41 units on the first day, then tested using the activity of these same units on
later days. Within-day classification of odors (dotte line) and a surrogate example with
shuffled labels (dashed line) are included as control cases. (d) Cumulative probability
distribution for the across-day corrected angle between representations (left), and increase
of the corrected angle with the time interval between same odor representations (right).
(e) Histogram for the drift rate in degree angles per day. (f) Population statistics,
including, on each test day and from left to right: the fraction of responsive neurons; the
average population sparseness; the average lifetime sparseness and average within-day
correlations (see Appendix E.II for a detailed description of the above quantities).
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Figure 5.5: Geometry of odor representation manifolds also drift in time. (a)
Schematic depiction of the representational manifold geometry, marking one of the angles
between the population vector responses to three different odors. (b) Edge-angle similar-
ity matrices at test days. (c) Edge-angle corrected dissimilarity measure as a function of
the time interval between test days (ρ and P denote the correlation coefficient and p-value
for the linear regression).

reflecting the non-invariant geometry of the representation.
One can further quantify this drift in the “geometry” of the represen-

taton manifold through a measure of matrix dissimilarity, as given by the
Frobenius norm between odor similarity matrices in days p and q :

∥Ap,q∥F := ∥Ap −Aq∥F =

√√√√ M∑
k=1

nodors∑
i=1

|apk,i − aqk,i|2 , (5.19)

where ∥Ap,q∥F = 0 for identical matrices, whereas higher values of the
Frobenius norm indicate an increasing difference between the odor similar-
ity matrices. Following the methods in Schoonover et al. 2021 we computed
a normalized angle matrix dissimilarity that corrected for within-day fluc-
tuations of the manifold geometry (see Appendix E, Eq. E.1). Fig. 5.5c
shows the value of this corrected matrix dissimilarity against the length of
the interval (in days) between the considered similarity matrices. As we can
see, changes in edge-angles between encoded odor responses accumulate in
time, evidencing the inconsistency of the representation geometry.

5.5 The role of learning

We saw how the empirically observed effects of representational drift over
the encoding of odors in the PCx could be successfully explained in terms
of STDP-induced weight changes under the presence of a spontaneous noisy
background of uncorrelated spiking activity. We remark that, for this first
part of the experiments, the presented odorants had never been shown to
the mice (nor to our simulated olfactory cortex) before the first test day
(day 0).

Nevertheless, a yet more intriguing phenomenon was observed empiri-
cally when measuring the drift in the representations to odorants previously
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Figure 5.6: A model for learning-dependent drift.

(a) Experimental setup to assess the dependence of the drift on the
frequency of stimulus presentation. (b) Schematic depiction of the drifting
representations during transients across test days and odor presentation.

known to the mice. More specifically, a cohort A of 3 mice were presented
with a panel of four odorants daily across 16 days prior to the beginning
of the experiment. Beginning on day 0, the same set of already “familiar”
odors was still presented on a daily basis, but mice were also subject to
a set of four “unfamiliar” odorants at 8-day intervals (see Fig. 5.6a, top).
Interestingly, a slower drift rate for the representations of “familiar” odor-
ants (i.e., those presented daily on the 16 days prior to the experiment) was
observed when compared to the drift for the unfamiliar ones.

Notably, a second cohort of mice (B) in which the 4 familiar odorants
were not presented daily after day 0, but at 8-days intervals instead (Fig.
5.6a, bottom), showed no statistically significant changes in the drift rate for
familiar and unfamiliar odorants. Put it together, these results suggests that
“learned” representations of familiar stimuli would naturally drift as fast as
representations of new inputs, unless the familiar stimuli are presented with
a relatively high frequency.

To understand this phenomenon, let us now go back to our representa-
tion manifold picture and consider that, through continued exposure to a
particular odorant, LTP and LTD mechanisms at the LOT synapses lead
to a stable, learnt representation, D0, of the given odorant in the PCx,
characterized by a given stationary probability distribution of the MTC-
to-pyramidal synaptic weights, P st0 (wmp). As we saw in the previous sec-
tion, during the transient days in which the odorant is not being presented,
STDP-mediated changes in the LOT synapses due to random spontaneous
activity in both, the OB and PCx, will cause the original representation,
D0, to drift in the activity space towards a new representation, Dt, after a
certain time T has elapsed (see Fig. 5.6b). Nevertheless, we hypothesize
that, provided the accumulated changes in the weights did not drive the
representation too far from the original point in the manifold, presenting
back the odorant can induce new changes in a time scale ∆t ≪ T towards
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the originally-learned stationary distribution of weights, P st0 (w), effectively
“drifting back” the representations into a new point in the neural space,
DT+∆t, such that ∥D0 − DT+∆t∥ < ∥D0 − DT ∥ (i.e., we move closer to the
originally learned representation).

To assess the validity of this hypothesis, we mimicked once again the
experimental setup in Schoonover et al. 2021, letting now changes in the
LOT synapses through STDP learning during both, inter-day transients
of background, poisson-like spikes, as well as during the presentation of
odorants in test days. There is, however, a strong computational limitation
regarding the relative time-scale of the drift with respect to the odor-induced
changes. In the original experiments, odorants were presented 7 times per
day, for a period of 4s each time, so that STDP changes induced by PCx
responses to odors took place on a span of ∼ 30s in each test day. On
the contrary, drifting effects during spontaneous activity occurred over a
time span of days between consecutive measures, which translates into an
effective rate around 3 to 4 orders of magnitude slower than the odor-induced
changes.

Since running a fairly realistic model of thousands of integrate-and-fire
neurons for a simulated time of days proves computationally unfeasible, one
could think of increasing the learning rate of the STDP rule several orders of
magnitude during the between-test intervals, to compensate for their much
shorter duration with respect to the experiment. However, one needs to
be specially careful when using this trick, as the width of the stationary
probability distribution of the weights will increase with the value of the
learning rate, and the emergence of very large weights can destabilize the
network (see Eqs. 5.7 to 5.13 and Gilson et al. 2011a). Moreover, this means
that even if the network was subject to the exact same spiking statistics
during the odor presentations as in the transients between test days, STDP
would be driving the network towards two different stationary probability
weight distributions in each case. To minimize this undesired effect, we used
an only moderately increased learning rate for the transients between test
days, while also increasing the spontaneous firing rate of PCx neurons (see
Appendix E.I for the exact values of all parameters).

Moreover, to minimize the computational cost, we reduced by an or-
der of magnitude the original size of the model to 100 pyramidal neurons,
250 MTCs and 25 FBINs. For such a small network size, it is likely that
changes induced by one odorant will strongly affect the representation of
other odorants, because of the high percentage of neurons (in relation to
the network size) with a shared response across stimuli. To avoid these
undesired cross-stimuli effects due to the network limited representational
capacity, we conducted the simulations one odorant at a time, resetting
the initial conditions for the network at the beginning of each experiment.
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Furthermore, because we are interested in the differences that emerge exclu-
sively due to differences in the frequency of stimulus presentation, we got
rid of the possible variability steaming from the use of different odorants for
the familiar and unfamiliar cases (i.e., different spatiotemporal patterns of
MTCs activity), employing the exact same set of inputs in both cases.

In Fig. 5.7 we show analysis for the simulations of the two experimen-
tal frameworks above, with results for the familiar and unfamiliar stimuli
averaged over the same set of 8 different odorants.

The first experiment (Fig. 5.7, top row) mimics mice in cohort A, in
which familiar odorants are presented every day for the 32-days of the sim-
ulations (16 days of “familiarization” + 16 days of experiment), while “un-
familiar” odorants are presented at 8-days interval after day 0. We notice
how responses of pyramidal neurons to the unfamiliar odorants became more
dissimilar across days as compared to the familiar odorant (Fig. 5.7a). No-
tably, in can be seen in Fig. 5.7b-c how the drift for the representation of
the unfamiliar odorants was was almost twice as fast (2.52 ± 0.91 ) for the
representations of unfamiliar odorants as compared to the case in which the
odorants were presented daily (1.38 ± 0.58)

The results for a second experiment mimicking cohort B, in which the
familiar odorants are presented at 8-days interval after day 0, are shown
in Fig. 5.6, bottom row). Just as in the experimental results shown by
Schoonover et al, when the familiar odorants were not presented frequently
after the beginning of the experiment, no significant differences were mea-
sured in the drift rates when compared to the unfamiliar odorants case.

5.6 Conclusions and perspectives

In this chapter we went through the intricacies of the phenomenon known
as representational drift, trying to understand the fundamental mechanisms
that can give rise to the empirically observed drifting population responses
during odor encoding, using a fairly realistic spiking model of the olfactory
cortex.

In particular, we showed that a relatively simple weight-dependent STDP
rule at the LOT connections, combined with large periods of noisy, resting-
state spiking activity at both, the OB and PCx levels, could reproduce
not only qualitatively, but also quantitatively the experimental findings of
Schoonover et al. regarding the existence of representational drift in olfac-
tory cortex (Schoonover et al. 2021). Within our model, which is based on
the work of (Stern et al. 2018) with further simplifications and the addition
of synaptic plasticity, we also showed that no invariant geometry seemed
to be present in the across-day comparison of neural population responses,
although population statistics remained fairly invariant across the length of
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Figure 5.7: Drift rate changes with the frequency of odor presentation. For
cohort A: (a) firing rates for odor-unit pairs within-day and across 8-days intervals; (b)
cumulative probability distribution for the drift rate; (c) Box-plot for the corrected rate
drift, measured in angles per day. Plots (c-d) show the exact same quantatities for
simulations of cohort B. In all cases, values for familiar (unfamiliar) odorants are plotted
in blue (red).
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the experiment.
Moreover, we were able to characterize the observed dependence of the

drift rate on the frequency of stimulus presentation in terms of the opposing
effects of STDP-mediated changes during noisy, resting-state activity and
odor presentation. Within this picture, drifting representations (i.e., in the
activation of neurons) are a result of drifting synaptic weights, meaning that
long-term potentiation of the excitatory synapses carrying input to neurons
that are originally responsive for a given odorant, could correct in some
directions of the weight space the accumulating changes due to random
drift.

We remark that our hypothesis, based on the possibility of synaptic
plasticity changes in the lateral olfactory track (LOT) connections between
the olfactory bulb (OB) and the piriform cortex (PCx), is also backed
experimentally by recent findings showing that LOT synapses could un-
dergo strong and robust long-term potentiation mediated by only a few
local NMDA-spikes (Kumar et al. 2021). The question remains of how this
changing responses at the pyriform cortex can then be readout to generate
an stable perception of the encoded odorants, if no invariant manifold is
preserved across time.
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ChapterA

Making sense of correlations

I Linking correlations and structure

In this first Appendix we will derive a simple proof for Eq. 2.15, which
relates the long-time window covariance matrix of the linear-rate model
(LRM) described by Eq. 2.12, to the connectivity matrix describing the
interactions among the units.

We start by rewriting the linear rate model in vector form as:

ẋ(t) = (−I + J)x(t) + ξ(t) (A.1)

where J defines the connectivity matrix, I is the identity, and ξ(t) is an un-
correlated Gaussian noise with variance σ2, such that ξ(t)ξT (s) = σ2δ(t−s).
Let us define A ≡ −I+ J . The solution for the above stochastic differential
equation, which is just a multivariate Ornstein-Uhlenbeck process, can then
be written as:

x(t) = e−A(t−t0)x(t0) + e−A(t−t0)
∫ t

t0

e−Asξ(s) (A.2)

Taking x(t0) = 0 (as in Hu et al. 2020), and assuming the stationary regime
has been reached (t0 → ∞) the solution is just:

xst(t) = e−At
∫ t

−∞
e−Asξ(s) (A.3)



Definition I.1 (Covariance matrix in the stationary regime). For
the Ornstein-Uhlenbeck process defined by Eq. A.1, the covariance in
the stationary regime is the following matrix of scalar products:

σ̂ = ⟨rst(t)rTst(t)⟩ (A.4)

which is time-independent in the stationary regime, as we will see later.

We now set out to prove that the above covariance matrix follows a Lya-
punov equation.

Lemma I.2. The covariance matrix for the Ornstein-Uhlenbeck process
in the statonary regime, σ̂, verifies the following Lyapunov equation:

Aσ̂ + σ̂AT = σ2I (A.5)

Proof. This is just a simple calculation:

Aσ̂ + σ̂AT =

∫ t

−∞
Ae−A(t−s)

∫ t

−∞

σ2δ(s−z)︷ ︸︸ ︷
⟨ξ(s)ξT (t)⟩e−AT (t−z)dz

+

∫ t

−∞
e−A(t−s)σ2e−A

T (t−s)ATds

=

∫ t

−∞

d

ds
[e−A(t−s)e−A

T (t−s)]ds

=σ2[e−A(t−s)e−A
T (t−s)]t−∞ = σ2

(A.6)

In particular, from the last lemma and the fact that A is time-independent,
one can already derive that must be also time-independent.

To provide a measure of the distance to criticality, in both the works of
Dahmen et al. 2019 and Hu et al. 2020, the authors resorted to the com-
putation of long-time-window covariances. Let us give now a more formal
definition of this matrix.



Definition I.3 (Long-time window covariance). We define the de-
viation of the activity of unit i with respect to its mean value in the time
window [t, t+ ∆t] as:

∆si(t) =

∫ t+∆t

t
xi(t

′) − ⟨xi(t′)⟩dt′ , (A.7)

and the long-time window (or noise) covariance as:

Ci,j = lim
∆t→∞

1

∆t
⟨∆si(t)∆sj(t)⟩ (A.8)

Let us show now how the above definition can be easily treated to find a
recipe that allows us to calculate long-time window covariances from em-
pirical data. Going back to the our cherished LRM, the long-time window
covariance can now be writen as:

Ci,j = lim
∆t→∞

1

∆t

〈∫ t+∆t

t
(xi(s) − ⟨xi(s)⟩) ds

∫ t+∆t

t
(xj(z) − ⟨xj(z)⟩) dz

〉
= lim

∆t→∞

1

∆t

(〈∫
t
xi(s) ds

∫
t
xj(z) dz

〉
−
〈∫

t
xi(s) ds

〉∫
t
⟨xj(z)⟩ dz

−
〈∫

t
xj(z) dz

〉∫
t
⟨xi(s)⟩ ds+

∫
t
⟨xi(s)⟩ ds

∫
t
⟨xj(z)⟩ dz

)
, (A.9)

where we took into account that noise averages can only affect variables
that have not been averaged over time yet. We can define now the vectors:

Ii :=

∫ t+∆t

t
xi(s)ds, χi :=

∫ t+∆t

t
⟨xi(s)⟩ds , (A.10)

where, once again, ⟨·⟩ refer to averages over realizations of the noise (i.e.,
samples). Now, since the averages commute with the integrals, we can
finally rewrite the expression for the long-time-window covariance as:

Ci,j = lim
∆t→∞

1

∆t
(⟨IiIj⟩ − (χi⟨Ij⟩ + χj⟨Ii⟩) + χiχj)

= lim
∆t→∞

1

∆t
(⟨IiIj⟩ − χiχj) . (A.11)

Now, if one calculates the χi terms for the stationary solution we found
in Eq. A.3, it is straightforward to see that they all vanish (in real mea-
surements, this terms are of order 1/

√
M , where M is the number of mea-

surements), meaning that only the integrals Ii need to be computed. The



above result serves as a recipe to calculate the long-time window covariance
matrix using the series of data obtained from different realizations of the
firing rates, provided the time window is sufficiently big compared to the
typical time scale of the time series.

At this point, we just need one more result on correlations before setting
out to prove Eq. 2.15.

Proposition I.4 (Correlations at different times). Consider the
firing rates x(t) defined by equation A.1. We then have:

• If s>t: Then ⟨xst(t)x
T
st(s)⟩ = σ̂e−A

T (s−t).

• If t>s: Then ⟨xst(t)x
T
st(s)⟩ = e−A

T (s−t)σ̂.

Proof. We prove the case s > t (the second case is analogous).

⟨xst(t)xst
T (t)⟩ =

∫ t

−∞
eA(z−t)ξ(z)dz

∫ s

−∞
eA

T (u−s)ξT (u)du

=

∫ t

−∞

∫ s

−∞
eA(z−t)eA

T (u−s)σ2δ(z − u)dzdu

=

(∫ t

−∞
eA(z−t)σ2eA

T (z−t)
)
e−A

T (s−t)

(A.12)

Now, using the fact that the covariance matrix fulfils the Lyapunov equation,
Aσ̂ + σ̂AT = σ2, we obtain:

⟨xst(t)xst
T (t)⟩ =A

(∫ t

−∞
e−A(t−z)σ̂e−A

T (t−z)dz

+

[∫ t

−∞
e−A(t−z)σ̂e−A

T (t−z)dz

]
AT

)
e−A

T (s−t)

(A.13)

And, finally, since:

d

dz

[
e−A(t−z)σ̂e−A

T (t−z)
]

=Ae−A(t−z)σ̂e−A
T (t−z)

+ e−A(t−z)σ̂e−A
T (t−z)AT ,

(A.14)

one can write:

⟨xst(t)xst
T (t)⟩ =

{∫ t

−∞

d

dz

[
e−A(t−z)σ̂e−A

T (t−z)
]
dz

}
e−A

T (s−t)

= σ̂e−A
T (s−t)

(A.15)



With all the above steps we can proceed and give a formal proof of
the relation between covariances and connectivity in the linear-rate-model
framework.

Theorem I.5 (Relation between connectivity and long-time win-
dow covariance). For a linear-rate model driven by external white
noise, as described by Eq. A.1, the long-time-window covariance is re-
lated to the connectivity matrix J as:

C(J) = σ2(I− J)−1(I− J)−T (A.16)

Proof. This is now a simple calculation:

C = lim
∆t→∞

1

∆t

∫ ∆t

0

∫ ∆t

0
⟨xst(t)xst

T (s)⟩dsdt

= lim
∆t→∞

1

∆t

t<s(We use previous result)︷ ︸︸ ︷∫ ∆t

0
ds

∫ s

0
dtσ̂e−A

T (s−t) +

t>s︷ ︸︸ ︷∫ ∆t

0
dt

∫ t

0
dsσ̂e−A

T (s−t)

= lim
∆t→∞

1

∆t
∆t
(
σ̂A−T +A−1σ̂

)
⇒ ACAT = Aσ̂ + σ̂AT

(A.17)

Meaning that:

C = σ2A−1A−T = σ2(I− J)−1(I− J)−T (A.18)

Although derived here on the basis of linear response theory, we remark
that this relation has been proven to be very general, holding as a very
good approximation for many different (nonlinear) models, including spiking
neural networks (see, for instance, Pernice et al. 2011; Trousdale et al. 2012;
Dahmen et al. 2019 and Ocker et al. 2017 for a recent review).

II Rank-ordered eigenvalues vs probability densi-
ties

In Section 2.2 we argued that if correlations are self-similar inside a
cluster of size K, then the n-th largest eigenvalue, λn, decays as a power-
law of its rank, n, as:

λn = A
( n
K

)−µ
. (A.19)

On the other hand, Section 2.4.4 reported on the probability density of the
covariance matrix eigenvalues (Eq. 2.17), maintaining that the tail of the



distribution converges to a power-law provided the system is close to the
edge of instability:

p(λ) ∼ Bλ−ν . (A.20)

Here we make explicit the relationship between these two power-laws. We
first notice that the spectrum of a matrix of size K is composed by K
discrete eigenvalues:

p(λ) =
1

K

K∑
n=1

δ (λ− λn) . (A.21)

In the limit of K → ∞ the above discrete distribution can be approximated
by a continuous one:

p
(c)
RC(λ) ≈ 1

K

∫ ∞

1
δ (λ− λn) dn =

1

K

∫ ∞

1
δ

(
λ−A

( n
K

)−µ)
dn, (A.22)

where we used Eq.A.19 for the rank-ordering of the spectrum . The function

g(n) ≡ λ−A
(
n
K

)−µ
has roots n0 = K

(
λ
A

)− 1
µ . Using the following property

of the Dirac-delta distribution:

δ (g(n)) =
δ (n− n0)

|g′ (n0)|
=

δ (n− n0)

K−1Aµ
(
λ
A

)µ+1
µ

, (A.23)

the spectral density reads:

p
(c)
RC(λ) ≈ 1

Kµ
A

1
µKλ

−1− 1
µ

∫ ∞

1
δ (n− n0) dn =

1

µ
A

1
µλ

−1− 1
µ (A.24)

Thus, by comparing Eq. A.20 with Eq.A.24, one readily finds a rela-
tionship between the power law exponent µ of the rank-ordered eigenvalues
and the exponent of the spectral distribution ν:

ν = 1 +
1

µ
. (A.25)

For a more detailed discussion of this scaling relation see, for instance,
W. Li 2002 and De Marzo et al. 2021.

III Cross-validated PCA

Let us consider two observation matrices, X(1), X(2) ∈ RN×T , corre-
sponding to two identical realizations or trials of an experiment. For sim-
plicity, we further assume that the mean activity of each neuron across im-
ages has been subtracted, so that both matrices have zero-mean rows. The



Singular Value Decomposition (SVD) theorem states that any observation
matrix X can be decomposed as:

X = USV T , (A.26)

so that

XV = US =⇒ Xvi = σiui, (A.27)

where U ∈ RN×r contains the ui eigenvectors by columns, V ∈ RT×r con-
tains the vi eigenvectors by columns, and S ∈ Rr×r is a diagonal matrix
containing the singular values sii = σi =

√
λi.

Assume one has performed SVD on the first trial observation matrix
X(1), obtaining the singular vectors U(1) and V(1). Defining the projection

matrix P = UT(1) ∈ Rr×N , which diagonalizes C
(1)
u = 1

T−1X(1)X
T
(1), one can

compute:

Y(1) = PX(1) =⇒ y
(1)
i = (u

(1)
i )TX(1) ∈ R1×T , (A.28)

where Y(1) ∈ Rr×T contains the projection of the first trial activity over
its r principal components. Now, the idea of cv-PCA is to project on the
same subspace the observations coming from the second trial (Stringer et al.
2019a):

Y(2) = PX(2) =⇒ y
(2)
i = (u

(1)
i )TX(2) ∈ R1×T , (A.29)

and ask to form a covariance matrix with the product of both projections:

Cψ =
1

T − 1
Y(1)Y

T
(2) =

1

T − 1

 y
(1)
1 · y(2)

1 y
(1)
1 · y(2)

2 ...

y
(1)
2 · y(2)

1 y
(1)
2 · y(2)

2 ...

... ... y
(1)
r · y(2)

r

 .

(A.30)
One can now hypothesize that the activity at time t of any neuron i during
trial k can be linearly decomposed as:

x
(k)
i (t) = ψi(t) + ϵ

(k)
i (t, (A.31)

where ψi denotes the input-related activity, which should be independent of

the trial for experiments carried in identical conditions; and ϵ
(k)
i is defined

as background or trial-to-trial variable activity, spanning a subspace that is
orthogonal to the input-related one. Let us now show that the i-th diagonal
element of Cψ is a non-biased estimator of the input-related variance ωi:

ωi =
1

T − 1
y
(1)
i · y(2)

i =
1

T − 1
(u

(1)
i )TX(1)X

T
(2)u

(1)
i . (A.32)



Rewriting the observation matrices as X(k) = Ψ + Σ(k), where Ψ contains

vectors ψi in rows and so does Σ(k) with vectors ϵ
(k)
i :

ωi =
1

T − 1
uTi
(
Ψ + Σ(1)

) (
Ψ + Σ(2)

)T
ui

=
1

T − 1
uTi ΨΨTui +

1

T − 1
uTi Σ(1)Ψ

Tui,

(A.33)

where all the terms containing Σ(2) can be dismissed due to the statistical in-
dependence of the realizations. Under reasonable approximations shown in
Stringer et al. 2019a, one can prove that if the singular vectors ui approach
the singular vectors of Ψ, then the first term converges to the actual vari-
ance of the input-related activity along the principal direction ui, while the
second term converges to zero. We have thus seen how the cross-validated
Principal Component Analysis (cvPCA) method proposed by Stringer et al.
allows one to estimate the input-related covariances.

Is it possible to take a step further and find a proxy for the input-related
activity observation matrix Ψ ∈ RN×T , such that C̃ψ = 1

T−1ΨΨT has the
same eigenvalue spectrum as Cψ? To do so, we first define a new basis of
projected vectors given by:

zi =

√
y
(1)
i · y(2)

i

y
(2)
i∥∥∥y(2)
i

∥∥∥ ∈ R1×T . (A.34)

which clearly fulfills E
[
zi · zTi

]
= ωi under the same conditions as above. If

Z ∈ Rr×T is the matrix composed by the r vectors zi in rows, then:

Ψ = P TZ. (A.35)

is the input-related activity of the neurons. From there, it is straightfor-
ward using Eq.A.31 that one can estimate the background activity just by
subtracting the input-related activity from the raw data:

Σ(k) = X(k) − Ψ. (A.36)



ChapterB

Supplementary Information to
Chapter 2

I Experimental protocols

∗ Steinmetz et al.’s dataset

In the study by Steinmetz et al., initial surgery was performed under
anesthesia to implant a steel headplate and a 3D-printed recording chamber
on mice, which facilitated the stability in the recording conditions. Record-
ings of neural activity were then performed by inserting Neuropixels elec-
trode arrays into the left hemisphere of the brain. The use of several Neu-
ropixels probes, each coated with DiI for later track localization and present-
ing 384 selectable recording sites, allowed for a number of brain regions being
recorded simultaneously in each session. Neural data was then processed
with Kilosort Pachitariu et al. 2016 and curated manually, with recording
sites localized to brain regions through histological analysis, complemented
by alignment with the Allen Institute Common Coordinate Framework.

The study was conducted in the context of a two-alternative unforced
choice task, although for the analysis presented in Chapter 2 we filtered the
data leaving only the intervals in the recordings corresponding to sponta-
neous, resting-state activity. Adding all sessions and mice together, a total
of 42 brain regions was recorded, capturing the activity of 29,134 neurons.
In our analysis, we limited study to those sessions for each mice containing
more than 128 simultaneously recorded neurons.

† Soriano’s group datasets

The dataset analyzed in Section 2.6 is based on the unpublished master
thesis work of M. Olives Verger, from J. Soriano’s lab. In this section we
provide details of the corresponding protocols employed, which are in any



case similar those used in previous works of J. Soriano’s group (see, for
instance, Montalà-Flaquer et al. 2022).

For each type of topographical pattern, masks were created from graphic
designs and used in a lithography process to transfer the design onto a
silicon wafer. PDMS was then mixed, poured onto the patterned wafer, and
cured to form a negative topographic mold with the desired structure, whose
surface was treated with oxygen plasma and coated with poly-D-lysine to
enhance neuron adhesion.

Neurons from rat cerebral cortex were then dissociated and seeded onto
the PDMS surfaces. Recording of neural activity using fluorescence calcium
imaging techniques did not begin until day 5 after the culture seeding (to
allow for reliable fluorescence signals), and lasted for 13 more days, after
which neurons began to degrade of detach from the substrate. During the
recording process, 732 regions of interest (ROI) were identified, and for
each of these regions the mean fluorescence intensity was measured over a
15-minute period each day.

‡ The OMEGA dataset

The full OMEGA dataset contains a total of about 900 resting-state
MEG recording sessions, for a total of over 75 hours of data (Niso et al.
2016). The access to the dataset was granted for the present study for
12 months, and reviewed and approved by the internal research ethics board.

The recordings were collected for 294 volunteering participants, out of
which 161 subjects are healthy controls, 127 subjects were diagnosed Parkin-
son disease, and 7 participants were diagnosed with Chronic Pain. The
recordings were taken with a 275-channel 2005 series CTF MEG system
at the McConnell Brain Imaging Center, at a time resolution of 2400Hz.
The data is structured according to the standard BIDS 1.7.0 and was pre-
processed with the open-source software Brainstorm (Tadel et al. 2011).

Following the recommended protocol in Tadel et al. 2011, we applied a
Notch filter at frequencies of 60, 120, 180, 240 and 300Hz to remove the
noise due to the AC power line frequency in Canada, and a high-pass filter
at 0.3Hz, 60dB. Moreover, since the dataset contains simultaneous bipolar
Electrocardiogram (ECG) and vertical and horizontal bipolar Electroocu-
logram (EOG) recordings, we cleaned the MEG data from the artifacts
due to heartbeats and eye blinks. The artifact cleaning procedure con-
sists in detecting reproducible stereotyped and localized topographies, that
correlate with the signals of the EOG and ECG, through a Signal-Space
Projection (SSP).



II Choosing the right time bin

In order to determine pairwise correlations from empirical neural activity
data, it is necessary to discretize the time into bins of certain length ∆t.
In Chapter 2, we obtained a spike train vector from a list of spike times t∗j
using a common value of ∆t for all units belonging to the same brain region.

The number of bins for a neuron can be therefore chosen as Ti =
max(t∗j )

∆t ,
and more generally we will set T = max(Ti) so that all neurons have the
same amount of bins in their spike trains.

Choosing the time bin that best transforms the spike times into dis-
crete trains of spikes is an open problem in neuroscience for which several
solutions have been proposed: from the use of random bins (Tamura et
al. 2012), to methods that find the best bin size by minimizing a certain
cost function (Omi et al. 2011; Cubero et al. 2020; Schölkopf et al. 2007;
Ghazizadeh et al. 2020), and bin-less approaches (Victor 2002; Paiva et al.
2010). The problem becomes even more prominent when working with the
simultaneously-recorded activity of a large number of cells as, typically, one
finds neurons operating at broadly different time scales within the same area
(see Fig.B.1), as well as a hierarchy of timescales across regions (Kiebel et
al. 2008; Spitmaan et al. 2020).

Since we are interested in a measure of the “typical” time-scale at which
neurons in a population operate, and given also the large neuron-to-neuron
variability (see single-cell histograms in Fig. B.1), we define the optimal
time bin ∆t as the geometric mean of all ISIs from neurons in the popula-
tion which (black dashed line in Fig. B.1). This geometric-mean value is
computed for each region and subsequently used in the corresponding RG
analysis of Chapter 2 (see Table B.1 for a summary of all regions with their
corresponding selected time bin).

On the other hand, the computation of each region’s distance to criti-
cality relies on the equivalence between time-lagged covariances and spike-
count covariances, a relation that holds exactly only in the limit of very
large observation times ∆t → ∞, but can be applied in practice provided
the autocorrelation functions for the neurons decay within the chosen time
bin. Thus, we seek to find the minimum bin size ∆t that granted stationary
spiking statistics while maximizing the number of samples. For this, spike-
trains were first smoothed using a Gaussian-kernel with σ = 50ms to obtain
a firing rate time-series. Then, for each neuron, the autocorrelation function
of the activity was computed. For each region, single-cell curves were then
averaged across all neurons to obtain an estimate of the autocorrelation
for the population activity (see inset in Fig. 2.4). The resulting decaying
function of the lag was fitted to an exponential, extracting a characteristic
time-scale, τCorr, for each experiment within a region. Finally, these values



Figure B.1: Histograms estimating the probability of finding a certain value of the inter-
spike interval (ISI) in the resting-state activity of individual neurons belonging to a par-
ticular area (results shown for 13 out of 16 regions). Each colored histogram in the
background represents the distribution for a single neuron (only a few neurons are shown
for the sake of clarity). The distribution for the ISIs across all neurons is plotted in light
blue, with a black dashed line marking the geometric mean of the ISIs distribution in each
area. The later will define our measure for the “optimal” time bin.



were averaged across experiments to obtain the mean autocorrelation decay
time in each region (see Table B.1). At the light of these values, we chose an
optimal ∆t = 1s that we used across all distance-to-criticality estimations
when computing spike-counts covariances.

To assess whether this choice of ∆t is indeed sufficient to guarantee the
stationarity of the recordings in each region, we performed an augmented
Dickey-Fuller (ADF) test (Dickey et al. 1979). This type of statistical test
evaluates the null hypothesis that a unit root is present in a time series (i.e.,
it has some time-dependent structure and it is therefore non-stationary).
The alternative hypothesis, should the null hypothesis be rejected, is that
the time series is stationary. The adfuller function from the statsmodel
Python library was used to perform the analysis.

Thus, for each neuron in a particular region and experiment we tested
the null hypothesis at a 5% significance level, then counted the fraction of
neurons in the experiment for which the null hypothesis could not be rejected
(i.e., showed non-stationary activity). This fraction was then averaged over
all experiments to estimate the percentage of neurons with non-stationary
activity for a given region (see Table B.1), so that only those experiments
with less than 10% of the neurons showing non-stationary spiking statistics
were considered in subsequent analyses.

III Extended results on scale invariance

∗ Scaling of autocorrelations

Fig.B.2 shows the auto-correlation function for at different steps k of
the RG, computed as:

C(k)(t) =
1

Nk

Nk∑
i=1

⟨x(k)i (t0)x
(k)
i (t0 + t)⟩ − ⟨x(k)i ⟩2

⟨
(
x
(k)
i

)2
⟩ − ⟨x(k)i ⟩2

(B.1)

and normalized to lie within the unit interval. In each subplot, correspond-
ing to a region of the mouse brain, the above quantity is plotted against the
re-scaled time, t/τc, where τc is the characteristic time as obtained from a
fit of the autocorrelations to an exponential decay. For ease of visualization,
the errors —computed as the standard deviation over random (non-shuffled)
quarters of the data— are only shown in the last step of coarse-graining pro-
cedure.

In Fig.B.3, the characteristic correlation time, τc, is plotted for all the
considered regions at different steps of the the RG analysis as a function of
the number of neurons inside the coarse-grained variables, K, together with
a best fit of τc(K) to Eq.2.9 in the main text.



Figure B.2: Mean normalized correlation function of coarse-grained variables during the
RG flow, measured in 13 different areas of the mouse brain. Time is re-scaled for each
curve by the characteristic time scale τc(K), computed as the 1/e point of the decay.
Errors shown in the last step of coarse-graining are computed as the standard deviation
over random quarters of the data

Figure B.3: Scaling of the characteristic correlation time as a function of K in double
logarithmic scale for the different regions of the mouse brain. To facilitate the comparison
between regions, correlation time as been normalized as τc(K) = τc(K)/τc(K = 2).
Errorbars are computed as the standard deviation over random split-quarters of the data.



Figure B.4: Scaling of the covariance matrix spectrum for the resting-state activity in
clusters of size K = 16, 32, 64, 128 (blue, yellow, green and red markers, respectively) in 16
different brain regions. For each region, we measured the average powerlaw exponent and
its standard deviation across experiments (see Table B.2), while errorbars (often smaller
than the marker size) are computed as the standard deviation across split-quarters of
data.

† Scaling of eigenvalue spectra

In Fig. B.4 we show the observed scaling in the spatial correlations
inside the clusters, as measured by the evolution of the average correlation
eigenspectrum across PRG steps. Observe not only the decay of the rank-
ordered eigenvalues as a power law of the rank, but also the excellent collapse
of the cut-offs obtained after rescaling the eigenvalue rank by the total size
K.

IV Control analysis on quasi-universal exponents

∗ A test for powerlaw distributions

In the limit of N → ∞ there exist a direct relationship between the
exponent of the rank-ordered eigenvalues and their probability density (see
Appendix II). Therefore, we leveraged the approach in Clauset et al. 2009
to test whether a power-law distribution is indeed the best description of
the density of eigenvalues for the different regions in the data set. Following



Figure B.5: Best power-law (black dashed line) and exponential (purple dotted line) fits
for the covariance matrix eigenvalues at the last step of RG (pink line), together with
their corresponding R-Squared values. For each region, the experiment with the greatest
number of recorded neurons was considered.

Clauset et al. 2009 we computed the loglikelihood ratio (LR) between the
estimated power-law and equivalent exponential and lognormal candidate
distributions, together with the the p-value for the significance of the test.
In 14 out of the 16 regions, the exponential distribution provides a worse
fit —tested at a 5% significance level— than the corresponding power-law
(LR > 0 ; p ≤ 0.05). On the other hand, lognormal distributions always
provide an equally good description of the eigenvalue density (p > 0.05),
and cannot be ruled out as the actual underlying distribution. These values,
together with the R2 value for the best powerlaw and exponential fits of the
rank-ordered eigenvalues in each region, are listed in Table B.2, whereas the
corresponding fitted curves are plotted in Fig.B.5.

† Sensibility to time bin choice

Activity of neurons, even within the same brain region, can span many
time scales, with some neurons typically firing in the range of milliseconds
and with a characteristic time-scale of the order of seconds (see Fig.B.1).
Thus, in selecting a common time bin to convert the spike times of all
neurons within a region into discrete trains of spikes, we irretrievably lose
some information.

To assess whether the exponent values reported in the main text are



Figure B.6: Change of average scaling exponents as a function of the employed time bin
within the range ∆t ∈ [0.01s, 4s] for each region. The line inside of each box represents
the sample median, the whiskers reach the non-outlier maximum and minimum values;
the distance between the top (upper quartile) and bottom (lower quartile) edges of each
box is the inter-quartile range (IQR). Black diamonds represent outliers, defined as values
that are more than 1.5 times the IQR away from the limits of the box.

robust against our choice of ∆t, we repeated the same RG analyses using
different time-windows ∆t ∈ [0.01s, 4s] to bin the resting-state activity of
each region.

As illustrated in Fig.B.6, the values of the exponents α, β and z turn
out to be fairly robust within a broad range of biologically plausible time
scales. As one could trivially expect, broader time bins increase the prob-
ability of finding neurons spiking simultaneously (i.e., appearing as more
strongly correlated). This, in turn, has the effect of shifting the values of
the exponents α and β for the variance and free-energy scalings slightly
towards those expected for a fully correlated scenario. On the other hand,
the exponent µ remains fairly unchanged for binning times up to ∼ 100ms,
but then increases on longer time scales beyond the typical geometric mean
ISI of the regions.

‡ Sensibility to samples-to-neurons ratio

Fig.B.7 shows the dependence of the scaling exponent, µ, for the rank-
ordered eigenvalues of the covariance matrix with the samples-to-neurons



Figure B.7: For each region, the scaling exponent for the covariance matrix eigenvalues
at the last step of RG is plotted against the ratio samples-to-neurons in sub-sampled
experiments, then re-scaled by its expected value when a0 →∞ (estimated by using the
full length of the time series). For each region, the experiment with the greatest number
of recorded neurons was considered. Inset: Rank-ordered plot of eigenvalues in the MOp
region using all the neurons while taking (i) each of the four recordings belonging to a
experiment separately; (ii) merging them together; and (iii) averaging over quarter-splits
of the data. Line fit is over quarters of the data.

ratio a0 = T/N . Estimates for the exponent converge to an asymptotic
value only for sufficiently large ratios a0 > 20, while µ typically increases as
one moves towards the sub-sampled regime.

In the inset of Fig.B.7 we compare the fitted exponents for the rank-
ordered plot of eigenvalues in the example region MOp when i) taking the
activity recorded from each of the 4 intervals of spontaneous activity in the
recording session, ii) merging the 4 intervals together and iii) averaging over
quarter splits of the data set where the intervals were merged together. For
individual spontaneous intervals, the requirement a0 > 20 is not always ful-
filled, thus causing variability in the fitted exponents. By merging together
all recordings of spontaneous activity belonging to the same experiment we
can typically ensure that a0 > 20, even when analyses are performed over
quarter-splits of data. This confirms the consistency and robustness of the
estimated exponents.



Figure B.8: Scaling exponents for task-induced vs resting-state type of activity in 16
different regions of the mouse brain. Markers and colors for each area have been chosen
as defined by Fig.2.2 in Chapter 2. Error bars are defined as the standard deviation of
the corresponding quantity across all experiments belonging to the same region.

§ Resting-state vs task-induced activity

We plotted in Fig.B.8 the four measured scaling exponents in task-
induced vs resting-state type of activity, with results that clearly support
the idea that the observed exponents are almost invariant with the mouse
behavioral state, since only small deviations are observed in a few regions.

¶ RG analyses on surrogated data

As a sanity check, we performed the RG analysis over surrogated data
in three different ways:

• By randomly shuffling all the spikes for each neuron.

• By shifting all the spikes of each neuron by random time interval, so
that the structure within the spike train is preserved.

• By randomizing the spikes across neurons but not time, so that the
mean and variance of the population firing rate is preserved.

For these analysis, we chose the MOp region for having the greatest num-
ber of recorded neurons. We observe that shuffling the spikes in each neuron



Table B.1: Distance to criticality analysis. For each region we show: (i) number,
M , of available experiments; (ii) average number of neurons, N ; (iii) average duration,
tmax, of the experimental recordings; (iv) characteristic time scale of the autocorrelations;
(v) percentage of non-stationary neurons; (vi) distance to criticality, using the method
in Dahmen et al. 2019; (vii) distance to criticality, using the method in Hu et al. 2020;
(viii) distance between the sampled eigenvalue distribution and the theoretical expression
proposed in Hu et al. 2020, as given by the Cramer-von Mises statistic; (ix) same as in
(viii), but comparing the empirical distribution to a best-fitting MP distribution; (x)
distance to criticality extrapolated to a common system size of N = 104 neurons. All
errors are given as the standard deviation across available experiments. For a given region
each experiment corresponds to a different mouse, and only mice with more than N = 128
recorded neurons were selected.

Full name Abbrev. M N
(
×102

)
tmax

(
×102s

)
τCorr(ms) % N.S. ĝd ĝs L2

RC L2
MP ĝN=1e4

d

Anterior cingulate area ACA 3 1.8 ± 0.8 7.5 ± 3.2 0.10 ± 0.02 1.2 ± 0.5 0.70 ± 0.09 0.74 ± 0.09 0.07 ± 0.02 0.11 ± 0.04 0.965 ± 0.013
Basolateral amygdalar nucleus BLA 2 2.7 ± 0.0 8.1 ± 0.5 0.09 ± 0.01 1.3 ± 0.6 0.81 ± 0.00 0.86 ± 0.04 0.07 ± 0.02 0.17 ± 0.02 0.969 ± 0.000
Cornu ammonis CA1 2 1.9 ± 0.2 8.8 ± 2.9 0.07 ± 0.01 7.7 ± 0.3 0.85 ± 0.04 0.83 ± 0.05 0.06 ± 0.01 0.15 ± 0.02 0.980 ± 0.004
Caudoputamen CP 4 4.1 ± 1.0 11.0 ± 1.2 0.09 ± 0.01 2.6 ± 1.4 0.91 ± 0.02 0.93 ± 0.01 0.09 ± 0.02 0.23 ± 0.01 0.983 ± 0.002
Lateral septal nucleus LS 3 2.6 ± 0.5 6.4 ± 2.9 0.05 ± 0.03 2.1 ± 0.5 0.90 ± 0.02 0.83 ± 0.02 0.05 ± 0.00 0.15 ± 0.00 0.972 ± 0.007
Dorsal part of the lateral geniculate complex LGd 5 1.6 ± 0.1 8.3 ± 1.0 0.08 ± 0.01 1.6 ± 1.6 0.77 ± 0.04 0.82 ± 0.06 0.09 ± 0.02 0.12 ± 0.03 0.962 ± 0.009
Lateral posterior nucleus of the thalamus LP 2 1.8 ± 0.1 9.4 ± 0.7 0.08 ± 0.01 0.3 ± 0.3 0.72 ± 0.06 0.66 ± 0.06 0.07 ± 0.04 0.06 ± 0.00 0.983 ± 0.002
Medial geniculate complex of the thalamus MG 2 2.2 ± 0.2 10.0 ± 2.4 0.09 ± 0.01 3.4 ± 3.4 0.74 ± 0.07 0.73 ± 0.00 0.09 ± 0.02 0.08 ± 0.01 0.962 ± 0.009
Primary motor area MOp 3 4.2 ± 2.2 11.5 ± 0.9 0.12 ± 0.02 1.3 ± 0.5 0.93 ± 0.01 0.91 ± 0.02 0.09 ± 0.01 0.27 ± 0.02 0.987 ± 0.002
Secondary motor area MOs 5 2.5 ± 0.7 8.5 ± 3.2 0.10 ± 0.01 4.3 ± 1.8 0.84 ± 0.02 0.84 ± 0.03 0.06 ± 0.01 0.16 ± 0.02 0.975 ± 0.000
Orbital area ORB 3 2.7 ± 0.3 9.5 ± 0.8 0.09 ± 0.02 1.8 ± 0.7 0.87 ± 0.02 0.80 ± 0.02 0.05 ± 0.01 0.13 ± 0.01 0.980 ± 0.003
Prelimbic area PL 4 2.4 ± 0.5 8.7 ± 1.6 0.12 ± 0.04 3.9 ± 2.3 0.83 ± 0.05 0.80 ± 0.08 0.04 ± 0.01 0.14 ± 0.05 0.974 ± 0.010
Posterior complex of the thalamus PO 3 2.8 ± 1.1 10.1 ± 1.0 0.10 ± 0.03 0.9 ± 0.6 0.89 ± 0.02 0.78 ± 0.05 0.09 ± 0.02 0.12 ± 0.03 0.983 ± 0.005
Superior culliculus, intermediate gray layer SCig 2 2.8 ± 0.9 8.4 ± 0.4 0.11 ± 0.00 3.6 ± 2.0 0.91 ± 0.01 0.86 ± 0.05 0.08 ± 0.02 0.19 ± 0.04 0.986 ± 0.001
Primary somatosensory area SSp 2 3.3 ± 0.0 11.6 ± 1.0 0.12 ± 0.01 1.7 ± 0.7 0.93 ± 0.01 0.91 ± 0.02 0.08 ± 0.01 0.20 ± 0.02 0.988 ± 0.002
Primary visual area VISp 4 1.9 ± 0.3 9.5 ± 2.1 0.08 ± 0.01 4.0 + 2.5 0.84 ± 0.03 0.85 ± 0.02 0.07 ± 0.00 0.16 ± 0.02 0.978 ± 0.004

(Fig.B.9b); shifting them (Fig.B.9c); or randomizing their label across neu-
rons (Fig.B.9d) destroys the non-trivial scaling properties observed in the
unsurrogated case (Fig.B.9a), leading to exponents α, β and z akin to those
expected for a model of uncorrelated neurons. The power-law spectrum of
the clusters covariance matrix still seems to decay with a smaller, non-trivial
exponent, in the shuffling and shifting scenarios —likely due to the firing
rate heterogeneity in the population activity—, but closer inspection reveals
that a power-law dependence is no longer suitable when compared to the
unsurrogated case.

‖ Tables of analysis and results



Figure B.9: RG analysis over a original, control data, and surrogated data created by (a)
randomly shuffling all the spikes within each neuron; (b) shifting all the spikes series of
each neuron by random time lag, so that the structure within the spike train is preserved;
and (c) randomizing the label of the spikes across neurons but not time. In columns, from
left to right, we plot the scaling of the normalized variance for the coarse-grained activity,
M2(K) (Eq.2.4); the scaling of the normalized “free-energy” with the cluster size (Eq.2.5);
the scaling of the normalized characteristic autocorrelation time, τc(K) (Eq.2.9); and the
covariance matrix spectrum for different steps of the RG flow, with he expected power
law fit against the normalized rank (Eq.2.11, inset:full spectrum, main:close-up).



Table B.2: Analysis of scale invariance. For each region we show the average time
bin, ∆t, used in the RG analysis (error as standard deviation across experiments). For
each scaling exponent we collect: (i) average value across experiments; (ii) MAE, com-
puted as the average across experiments of the experiment-specific errors measured over
split-quarters of data; (iii) standard deviation across experiments; (iv) R2 value of best
powerlaw fit for the experiment with a greater number of recorded neurons. For the expo-
nent µ, we also provide the R2 value of the best exponential fit, as well as the LR between
the estimated powerlaw fits and candidate exponential and lognormal distributions, with
positive ratios indicating that the data is best fitted by a powerlaw distribution (statisti-
cally significant p-values highlighted in boldface).

Abbrev. ∆t(s) ⟨α⟩ MAE σ R2 ⟨β⟩ MAE σ R2 ⟨z⟩ MAE σ R2 ⟨µ⟩ MAE σ R2
pow R2

exp
Exponential Lognormal
LR p LR p

ACA 0.16 ± 0.07 1.43 0.02 0.11 1.00 0.81 0.03 0.05 1.00 0.2 0.02 0.06 0.98 0.74 0.05 0.16 0.83 0.58 90.5 0.00 -0.1 0.22
BLA 0.13 ± 0.01 1.25 0.03 0.02 1.00 0.87 0.04 0.03 1.00 0.21 0.03 0.03 1.00 0.82 0.03 0.00 0.85 0.78 9.4 0.12 -2.9 0.09
CA1 0.13 ± 0.04 1.37 0.03 0.02 1.00 0.78 0.04 0.05 1.00 0.18 0.03 0.01 0.99 0.78 0.08 0.02 0.89 0.65 55.4 0.00 -0.3 0.59
CP 0.08 ± 0.02 1.38 0.02 0.12 1.00 0.77 0.05 0.06 0.98 0.16 0.02 0.03 0.99 0.98 0.1 0.15 0.96 0.67 43.3 0.00 -2.5 0.17
LS 0.17 ± 0.13 1.41 0.05 0.08 1.00 0.81 0.04 0.07 1.00 0.25 0.05 0.08 0.99 0.86 0.08 0.15 0.94 0.86 8.4 0.05 -0.9 0.32

LGd 0.07 ± 0.03 1.26 0.03 0.06 1.00 0.82 0.04 0.06 1.00 0.24 0.06 0.03 1.00 0.67 0.03 0.06 0.9 0.9 0.5 0.86 -1.5 0.21
LP 0.08 ± 0.02 1.36 0.03 0.07 1.00 0.77 0.02 0.02 1.00 0.23 0.05 0.06 0.99 0.52 0.06 0.06 0.99 0.63 152.3 0.00 -3.5 0.08
MG 0.06 ± 0.01 1.23 0.02 0.05 1.00 0.86 0.02 0.04 1.00 0.18 0.04 0.05 0.99 0.55 0.05 0.00 0.89 0.75 24.3 0.00 -0.0 0.90
MOp 0.06 ± 0.01 1.5 0.03 0.01 1.00 0.78 0.03 0.06 0.99 0.22 0.02 0.05 1.00 0.92 0.05 0.05 0.85 0.45 138.8 0.00 -0.2 0.66
MOs 0.16 ± 0.03 1.39 0.04 0.03 1.00 0.81 0.04 0.04 1.00 0.22 0.03 0.06 0.99 0.85 0.07 0.04 0.93 0.56 85.1 0.00 -0.0 0.87
ORB 0.12 ± 0.02 1.43 0.02 0.02 1.00 0.74 0.02 0.03 0.99 0.16 0.02 0.03 0.99 0.77 0.03 0.03 0.88 0.49 146.5 0.00 -0.6 0.50
PL 0.13 ± 0.08 1.42 0.04 0.10 1.00 0.82 0.04 0.1 0.99 0.19 0.03 0.02 0.99 0.77 0.05 0.13 0.86 0.52 180.9 0.00 -0.6 0.48
PO 0.07 ± 0.02 1.43 0.02 0.04 1.00 0.74 0.03 0.04 1.00 0.32 0.01 0.02 0.99 0.62 0.03 0.09 0.91 0.76 22.8 0.00 0.0 0.85

SCig 0.07 ± 0.00 1.31 0.04 0.01 1.00 0.82 0.04 0.01 0.98 0.21 0.04 0.02 1.00 0.77 0.08 0.06 0.96 0.76 26.6 0.00 -2.8 0.11
SSp 0.06 ± 0.01 1.51 0.04 0.01 1.00 0.77 0.02 0.12 0.99 0.27 0.02 0.01 1.00 0.91 0.03 0.04 0.82 0.44 121.4 0.00 -0.5 0.54

VISp 0.12 ± 0.04 1.42 0.02 0.06 1.00 0.73 0.02 0.05 1.00 0.15 0.02 0.02 0.98 0.90 0.04 0.14 0.98 0.75 22.2 0.00 -1.2 0.26



ChapterC

Supplementary Information to
Chapter 3

I The Mackey-Glass series

The Mackey-Glass chaotic time series used in Chapter 3 was generated
from the following delay differential equation:

dx

dt
=

[
αx(t− τ)

1 + x(t− τ)β
− γx(t)

]
, (C.1)

where τ represents the delay and the parameters are set to α = 0.2, β = 10
and γ = 0.1, a common choice for this type of prediction tasks (Yusoff et al.
2016; Ort́ın et al. 2015).

To construct the temporal series, the above equation was solved using
Matlab dde23 delay differential equation solver, generating 10000 points
with an initial washout period of 1000 points. Integration was performed
using a time step of ∆t = 0.1, with an absolute error tolerance of ε =
10−16, and the resulting time series was sampled every 10 points, following
the methodology in (Herbert Jaeger 2001b). Before feeding them to the
network, all input series were re-scaled by their maximum value to lay in
the range [0, 1].

Forecasting performance of the ESN was evaluated for the MG-17 time
series (with a delay τ = 17 and mildly chaotic behavior) using T = 4000
points as training set, then testing over Ttest = 400 points.

II Derivation of Oja’s rule

Originally, Oja proposed the plasticity rule that takes his name as a way
of deriving a local rule that implements Hebbian learning while normalizing
the synaptic weights at each step of the training (Oja 1982). With this
goal in mind, he considered that the total weight connecting pre-synaptic



neuron j to post-synaptic neuron k is normalized at each step by the sum
of all incoming weights to the post-synaptic neuron:

wkj(t+ 1) =
wkj(t) + ηyk(t)xj(t)√∑
j (wkj(t) + ηyk(t)xj(t))

2
(C.2)

where yk ≡ xk(t + 1) in the RC notation. From a biological point of view,
this type of normalization could arise, for instance, from a limited number
of synaptic resources that must be shared among all synapses. Writing now
wkj(t+ 1) = g(η) as a Taylor series expansion around η = 0:

wkj(t+ 1) = g(0) + g′(0)η +
g′′(0)

2
η2 + · · · (C.3)

where:

g′(0) ≡ ∂g

∂η

∣∣∣
η=0

=
yk(t)xj(t)√∑
j (wkj(t))

2
−
wkj(t)

∑
j wkj(t)yk(t)xj(t)(∑
j w

2
kj(t)

)3/2 . (C.4)

Using now the condition of normalized incoming weights to the post-synaptic

neuron (i.e.,
√∑

j (wkj(t))
2 = 1):

∂g

∂η

∣∣∣
η=0

= yk(t)xj(t) − wkj(t)yk(t)
∑
j

wkj(t)xj(t) (C.5)

pluggin the above expression into Eq.C.3 and disregarding al terms of order
O(η2):

wkj(t+ 1) ≈ wkj(t) + η

yk(t)xj(t) − wkj(t)yk(t)
∑
j

wkj(t)xj(t)

 (C.6)

Finally, assuming a linear activation function and no external inputs, so
that yk(t) =

∑
j wkj(t)xj(t), we obtain the local update equation known as

Oja’s rule:

wkj(t+ 1) ≈ wkj(t) + η
(
yk(t)xj(t) − wkj(t)y

2
k(t)

)
. (C.7)



ChapterD

Supplementary Information to
Chapter 4

I The representation of a chaotic attractor: be-
yond the third dimension

In the following plots we show two-dimensional projections of reservoir
units activities, when subject to the Loren’z series as input, over all pairwise
combinations of principal axes.

Each figure corresponds to a reservoir initialization in one of the four
points highlighted in Fig. 4.7, corresponding to a stable dynamical regime
(point A, Fig. D.1); a close-to-critical regime (point B, Fig. D.2); an un-
stable regime, but not too far from the critical point (point C, Fig. D.3);
and dynamical state far into the unstable regime (point D, Fig. D.4). The
same axes limits have been chosen for all figures and for all subplots within
each figure. We can see how, when the dynamics is very stable (point A),
most of the variability in the activity of the units can be capture with barely
two components, as the reservoir representation inherits the dimensional-
ity of the original input. Closer to the critical point, the trajectories still
move within a continuous and differentiable manifold, but of much higher
dimensionality as evidenced by the non-trivial dynamics taking place along
lower-rank components.



Figure D.1: Projections of reservoir units trajectories onto different pairwise combinations
of the first 5 principal components of the activity, during presentation of T = 6000 points
of the Lorenz’s attractor. The ESN was initialized with parameters according to point A
in Fig. 4.7, with a measured MLE = −0.798.

Figure D.2: Projections of reservoir units trajectories onto different pairwise combinations
of the first 5 principal components of the activity, during presentation of T = 6000 points
of the Lorenz’s attractor. The ESN was initialized with parameters according to point B
in Fig. 4.7, with a measured MLE = −0.0007.



Figure D.3: Projections of reservoir units trajectories onto different pairwise combinations
of the first 5 principal components of the activity, during presentation of T = 6000 points
of the Lorenz’s attractor. The ESN was initialized with parameters according to point C
in Fig. 4.7, with a measured MLE = 0.028.

Figure D.4: Projections of reservoir units trajectories onto different pairwise combinations
of the first 5 principal components of the activity, during presentation of T = 6000 points
of the Lorenz’s attractor. The ESN was initialized with parameters according to point D
in Fig. 4.7, with a measured MLE = 0.122.





ChapterE

Supplementary Information to
Chapter 5

I Model parameters

In the following tables, all time parameters have units of seconds, rates
are in herzs and potentials in millivolts.

II Extended methods

∗ Classifier analysis

Following the methods in Schoonover et al. 2021, we trained a Support
Vector Machine (SVM) with linear kernel and L2-regularization to classify
the odorants from the population responses of pyramidal neurons in the
PCx. For within-day classification, we used leave-one-out cross-validation,
training on all but one of the 56 trials on a given test day (8 odorants, 7
trials) and then testing on the trial that was left out. This procedure was
repeated until all trials on a given day had been tested in this way. For
across-day classification, the model was trained using the 56 trials on one
day, and then tested on all 56 trials on another day. As control case, we
measured performance on shuffled data by randomly permuting the odorant
stimulus labels on the test set.

Notably, in the experimental results of Schoonover et al, training and
testing of SVMs was limited to the lowest number of stable single units for
any across-day comparison and mouse (41 units). To produce a sensible

Experimental Setup
ndays nodors ntrials ncycles τins τexp ∆tIO ∆tID dt

32 8 7 8 0.150 0.350 2 100 0.0005



Weights Sparsity
⟨wmp⟩ ⟨wpp⟩ ⟨wpf ⟩ ⟨wfp⟩ ⟨wff ⟩ pmp ppp ppf pfp pff

5 1.25 10 10 10 0.1 0.022 0.1 0.1 0.065

STDP changes Background noise
ηtrans ηodor τ+ τ− A+ A− wmax

mp fspont fbl fexc
0.2 1 0.020 0.050 0.001 0.083 2 0.05 1.5 100

comparison, we randomly picked the same number of units in our simula-
tions to train and test the SVM, mimicking the heavily subsampled regime
in which the experiments take place.

† Matrix dissimilarity

The corrected matrix dissimilarity between days p and q is defined as:

∥Âp,q∥F :=
∥Ap,q∥F − ∥Aw∥F
∥As∥F − ∥Aw∥F

, (E.1)

where ∥Aw∥F := (1/ndays)
∑ndays

p=1 ∥Apodd−A
p
even∥ is the mean across all days

of the within-day Frobenius norm between similarity matrices computed in
odd and even trials, and ∥As∥F is the Frobenius norm between similarity
matrices measured on the first and last day of the experiment after odors
shuffling. In this way, ∥Âp,q∥F is (on average) bounded between zero, for
angle drifts on the order of intra-day fluctuations, and one, for the shuffled
case.

‡ Population statistics

To identify responsive odour–unit pairs, a Wilcoxon rank-sum test (Haynes
2013) was performed between the spike count during the 2-s epoch before
stimulus onset for all trials on a given day and the spike count on the seven
trials during the odorant stimulus, using a significance level of α = 0.001.

Given spontaneous baseline-substracted responses, rj,o, for each unit, j,
to a given odorant, o, , average population sparseness was defined as:

Sp =
N − 1

nodorsN

nodors∑
o=1

1 −

(
N−1

∑N
j=1 rj,o

)2
N−1

∑N
j=1 r

2
j,o

 (E.2)

whereas the average lifetime sparseness across all units was given by:

Slt =
nodors − 1

nodorsN

N∑
j=1

(
1 −

(
n−1
odors

∑nodors
o=1 rj,o

)2
n−1
odors

∑nodors
o=1 r2j,o

)
(E.3)



To compute within-day correlations between odor responses, population vec-
tors were averaged across even and odd trials separately. Thus, at each day,
we defined:

cp =
1

nodors

nodors∑
o=1

⟨(xevenp,o − xevenp,o )(xoddp,o − xoddp,o )⟩
σxeven

p,o
σxodd

p,o

, (E.4)

where xevenp,o ( xevenp,o ) is the population response to odor o on day p averaged
over all even (odd) trials.

Similarly, the average within-day angle at each day p was defined as:

θp =
1

nodors

nodors∑
o=1

cos−1
xevenp,o · xoddp,o

∥xevenp,o ∥∥xoddp,o ∥
. (E.5)
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Bédard, C., H. Kröger, and A. Destexhe (Sept. 2006). “Does the 1/f fre-
quency scaling of brain signals reflect self-organized critical states?” eng.
In: Physical Review Letters 97.11, p. 118102.

Bédard, Claude and Alain Destexhe (Apr. 2009). “Macroscopic models of
local field potentials and the apparent 1/f noise in brain activity”. eng.
In: Biophysical Journal 96.7, pp. 2589–2603.

Beggs, John and Nicholas Timme (2012). “Being Critical of Criticality in
the Brain”. In: Frontiers in Physiology 3.

Beggs, John M. and Dietmar Plenz (Dec. 2003). “Neuronal Avalanches
in Neocortical Circuits”. en. In: Journal of Neuroscience 23.35. Pub-
lisher: Society for Neuroscience Section: Behavioral/Systems/Cognitive,
pp. 11167–11177.

Berlucchi, G. and H. A. Buchtel (2008). “Neuronal Plasticity: Historical
Roots and Evolution of Meaning”. In: Experimental Brain Research
192.3, pp. 307–319.

Bertschinger, Nils and Thomas Natschläger (2004). “Real-time computation
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MLP multilayer perceptron 10

MP Marchenko-Pastur 36, 140

MTC mitral/tufted cell 101–104, 109, 115, 116
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OSN olfactory sensory neuron 100, 101

PCA Principal Component Analysis 46, 77, 78, 82
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PSP post-synaptic potential 4
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RMSE root mean-square error 59, 63, 64, 90, 91

RNN recurrent neural networks 10, 11, 52

ROI region of interest 41–44, 50
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